COMPARISON OF LAURUS NOBILIS EXTRACTS COMPOSITION OBTAINED BY MICROWAVE EXTRACTION, SUPERCRITICAL FLUID EXTRACTION AND STEAM DISTILLATION

UDC 665.525.74

  • Oleg Igorevich Pokrovskiy Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences Email: pokrovskiy@terraint.ru
  • Denis Igorevich Prokopchuk Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences Email: prokopchuk@terraint.ru
  • Saida Amiranovna Bagatelia Sukhum Institute of Physics and Technology of Abkhazian Regional Academy of Sciences Email: bagsaida@mail.ru
  • Sergei Alexandrovich Pokryshkin Nothern (Arctic) Federal University, Core facility center «Arktika» Email: serge.physchem@yandex.ru
  • Mikhail Olegovich Kostenko Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences; Lomonosov Moscow State University Email: kostenko@supercritical.ru
  • Olga Olegovna Parenago Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences Email: oparenago@scf-tp.ru
  • Anatolyevich Markolia Sukhum Institute of Physics and Technology of Abkhazian Regional Academy of Sciences Email: alhasmarkoliya@gmail.com
  • Valery Vasilyevich Lunin Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences; Lomonosov Moscow State University Email: vvlunin@kge.msu.ru
Keywords: bay laurel, supercritical fluid extraction, microwave extraction, steam distillation, gas chromatography, mass-spectrometry, sesquiterpene lactones

Abstract

A comparison of chemical composition of bay laurel extracts obtained by microwave extraction, supercritical fluid extraction and steam distillation was performed. Microwave extraction and steam distillation were shown to give similar essential oils. Microwave extract contains more monoterpenoid components, especially hydrocarbons. Steam distillation oil contains more sesquiterpenoid compounds, mostly oxygenated. SFE extract composition differs substantially from the ones obtained by two other methods. According to GC-MS data they contain much more sesquiterpenoid components, namely sesquiterpene lactones. This makes SFE a perspective candidate for isolation of biologically active compounds from laurel leaves. However, apart from valuable compound SFE extracts also contain substantial amounts of waxes as well as large quantities of some non-volatile component undetectable via GC-MS. In order to implement SFE into the practice of laurel processing one has to develop an approach for the fractionation of SFE extracts allowing isolating sesquiterpene lactone enriched fraction.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Oleg Igorevich Pokrovskiy, Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences

кандидат химических наук, старший научный сотрудник

Denis Igorevich Prokopchuk, Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences

ведущий технолог

Saida Amiranovna Bagatelia, Sukhum Institute of Physics and Technology of Abkhazian Regional Academy of Sciences

начальник отдела методов экстракции растительного сырья

Sergei Alexandrovich Pokryshkin, Nothern (Arctic) Federal University, Core facility center «Arktika»

научный сотрудник

Mikhail Olegovich Kostenko, Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences; Lomonosov Moscow State University

аспирант

Olga Olegovna Parenago, Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences

старший научный сотрудник, канд. хим. наук

Anatolyevich Markolia, Sukhum Institute of Physics and Technology of Abkhazian Regional Academy of Sciences

начальник лаборатории

Valery Vasilyevich Lunin, Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences; Lomonosov Moscow State University

президент факультета, доктор хим. наук, профессор, академик РАН

References

Konovalov D.A., Nasuhova N.M., Pharm. Pharmacol., 2015,vol. 2, no. 2(3), pp. 23–33. DOI: 10.19163/2307-9266-2014-2-2(3)-23-33.

Prokopchuk D.I., Pokrovskiy O.I., Parenago O.O., Bagateliya S.A., Markoliya A.A., Pokryshkin S.A., Lunin V.V., Khimiya Rastitel'nogo Syr'ya, 2018, no. 3, pp. 169–177. (in Russ.). DOI: 10.14258/jcprm.2018033758.

Ustinovich K.B., Prokopchuk D.I., Pokrovskiy O.I., Parenago O.O., Lunin V.V. Russ. J. Phys. Chem. B, 2018, vol. 12, no. 8, pp. 1306–1309. DOI: 10.1134/S1990793118080134.

Babushok V.I., Zenkevich I.G., Chromatographia, 2009, vol. 69, no. 3–4, pp. 257–269. DOI: 10.1365/s10337-008-0872-3.

Flamini G., Tebano M., Cioni P.L., Ceccarini L., Ricci A.S., Longo I.,J. Chromatogr. A, 2007,vol. 1143, no. 1–2, pp. 36–40. DOI: 10.1016/j.chroma.2007.01.031.

Peris I., Blázquez M.A., Int. J. Food Prop., 2015, vol. 18, no. 4, pp. 757–762. DOI: 10.1080/10942912.2014.906451.

Kilic A., Hafizoglu H., Kollmannsberger H., Nitz S., J. Agric. Food Chem., 2004,vol. 52, no. 6, pp. 1601–1606. DOI: 10.1021/jf0306237.

Caredda A., Marongiu B., Porcedda S., Soro C., J. Agric. Food Chem., 2002,vol. 50, no. 6, pp. 1492–1496. DOI: 10.1021/jf0108563.

Marzouki H., Khaldi A., Chamli R., Bouzid S., Piras A., Falconieri D., Marongiu B.,Nat. Prod. Res., 2009, vol. 23, no. 3, pp. 230–237. DOI: 10.1080/14786410801976400.

Santoyo S., Lloría R., Jaime L., Ibañez E., Señoráns F.J., Reglero G.,Eur. Food Res. Technol., 2006,vol. 222, no. 5–6, pp. 565–571. DOI: 10.1007/s00217-005-0027-9.

Marzouki H., Piras A., Marongiu B., Rosa A., Dessì M., Molecules, 2008, vol. 13, no. 8, pp. 1702–1711. DOI: 10.3390/molecules13081702.

El S.N., Karagozlu N., Karakaya S., Sahin S., Food Nutr. Sci., 2014, vol. 5, no. 2, pp. 97–106. DOI: 10.4236/fns.2014.52013.

Bayramoglu B., Sahin S., Sumnu G., Sep. Sci. Technol., 2009, vol. 44, no. 3, pp. 722–733. DOI: 10.1080/01496390802437271.

Lavrent'yev V.I., Markoliya A.A., Bagateliya S.A., Taniya R.G., Khimiya Rastitel'nogo Syr'ya, 2015, no. 2, pp. 85–96. (in Russ.). DOI: 10.14258/jcprm.201502401.

Methyl eugenol. URL: https://www.chemicalbook.com/ChemicalProductProperty_US_CB8198972.aspx

Eugenol. URL: https://www.chemicalbook.com/ChemicalProductProperty_EN_CB7208326.htm

Di Leo Lira P., Retta D., Tkacik E., Ringuelet J., Coussio J.D., van Baren C., Bandoni A.L.,Ind. Crops Prod., 2009, vol. 30, no. 2, pp. 259–264. DOI: 10.1016/j.indcrop.2009.04.005.

Pokrovskiy O.I., Prokopchuk D.I., Kostenko M.O., Ustinovich K.B., Parenago O.O., Lunin V.V., Russ. J. Phys. Chem. B, 2018, vol. 12, no 7, pp. 1176–1181. DOI: 10.1134/S1990793118070096.

Published
2019-12-27
How to Cite
1. Pokrovskiy O. I., Prokopchuk D. I., Bagatelia S. A., Pokryshkin S. A., Kostenko M. O., Parenago O. O., Markolia A., Lunin V. V. COMPARISON OF LAURUS NOBILIS EXTRACTS COMPOSITION OBTAINED BY MICROWAVE EXTRACTION, SUPERCRITICAL FLUID EXTRACTION AND STEAM DISTILLATION // chemistry of plant raw material, 2019. № 4. P. 373-385. URL: http://journal.asu.ru/cw/article/view/5431.
Section
Technology