RESEARCH OF WHEAT BRAN AND PRODUCTS OF THEIR PYROLYSIS FOR EVALUATION OF ENERGY USE POSSIBILITY

UDC 662.7

  • Aleksandr Vladimirovich Astaf'yev National Research Tomsk Polytechnic University Email: ava31@tpu.ru
  • Mariya Andreyevna Gaydabrus National Research Tomsk Polytechnic University Email: maria.lazy597@gmail.com
  • Kanipa Talgatovna Ibrayeva National Research Tomsk Polytechnic University Email: kti1@tpu.ru
  • Roman Borisovich Tabakayev National Research Tomsk Polytechnic University Email: TabakaevRB@tpu.ru
  • Nikolay Alekseyevich Yazykov Institute of Catalysis named after G.K. Boreskova SB RAS Email: Yazykov@catalysis.ru
  • Aleksandr Sergeyevich Zavorin National Research Tomsk Polytechnic University Email: Zavorin@tpu.ru
Keywords: renewable energy, biomass, agroindustrial waste, wheat bran, pyrolysis, ash residue, material balance, carbon residue

Abstract

The aim of the work is research thermal characteristics of bran and products of pyrolytic processing to evaluation the possibility of their use as a fuel.

As research methods, experiments were used to determine the yield of pyrolysis products and their characteristics, as well as differential thermal analysis. Thermotechnical characteristics of raw materials are determined by АСТМ Е1755-01, ISO 589:2008, ISO 5071-1:2013 and a bomb calorimeter ABK-1 (RET, Russia). The elemental composition of the raw materials is determined by the Vario Micro Cube analyzer (Elementar, Germany).

In result of the work is established that wheat bran has a high heat of combustion (16.6 MJ/kg) for biomass and a high yield of volatile (81%). The ash content of raw materials was 6.9%, herewith the ash residue has a sintered character at temperatures above 725 °C, which indicates the slag ability. The active stage of bran decomposition proceeds in a temperature range 225–500 °C, that established by means of the differential thermal analysis. The results of material balance determination showed that the carbon residue (43%) has a predominant yield from the raw materials, the share of pyrogenetic water is 29%, which is due to the exothermic reactions in the bran during heating, resin – 12%, gas – 16%. The CO2 and CO concentrations are dominated in composition of pyrolysis gas during a heating temperature to 350 °C, which is associated with the decomposition of the main components in the bran – cellulose and hemicellulose. The methane concentration begins to increase after 350 °C and reaches a maximum at 450 °C, the decomposition of thermally more resistant lignin was occured at these temperatures. The maximum gas heat of combustion (9.3 MJ/m3) was associated to the peak of methane concentration in gas.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Aleksandr Vladimirovich Astaf'yev, National Research Tomsk Polytechnic University

аспирант

Mariya Andreyevna Gaydabrus, National Research Tomsk Polytechnic University

студент

Kanipa Talgatovna Ibrayeva, National Research Tomsk Polytechnic University

аспирант

Roman Borisovich Tabakayev, National Research Tomsk Polytechnic University

кандидат технических наук, научный сотрудник

Nikolay Alekseyevich Yazykov, Institute of Catalysis named after G.K. Boreskova SB RAS

кандидат технических наук, научный сотрудник

Aleksandr Sergeyevich Zavorin, National Research Tomsk Polytechnic University

доктор технических наук, профессор

References

Rasporyazheniye Pravitel'stva RF ot 13.11.2009 g. №1715-r. Energeticheskaya strategiya Rossii na period do 2030 goda. [The order of the Government of the Russian Federation of November 13, 2009 No. 1715-r. The energy strategy of Russia for the period until 2030]. (in Russ.).

Osnovy gosudarstvennoy politiki v oblasti ekologicheskogo razvitiya Rossiyskoy Federatsii na period do 2030 goda. Utverzhdeno Prezidentom RF 30.04.2012 g. [The basics of state policy in the field of environmental development of the Russian Federation for the period until 2030. Approved by the President of the Russian Federation on April 30, 2012]. (in Russ.).

Bezrukikh P.P. Vozobnovlyayemaya energetika: segodnya – real'nost', zavtra – neobkhodimost'. [Renewable energy: today is reality, tomorrow is a necessity.]. Moscow, 2007, 120 p. (in Russ.).

Valovyy potentsial otkhodov zernovykh i zernobobovykh kul'tur Rossii // Proyekt «Geoinformatsionnaya siste-ma. Vozobnovlyayemyye istochniki energii Rossii» [The gross potential of wastes of grain and leguminous crops of Russia // Project “Geoinformation system. Renewable energy sources of Russia”] [Electronic resource]. URL: http://gisre.ru/maps/bio-rastr/cereals. (in Russ.).

Piir A.M. Naseleniye Sibiri i Severa: Materialy k uchebniku. [The population of Siberia and the North: Materials for the textbook]. St. Petersburg, 2016, 76 p. (in Russ.).

Popel' O.S., Yermolenko B.V., Yermolenko G.V. et al. Atlas resursov vozobnovlyayemoy energii na territorii Rossii. Nauchnoye izdaniye. [Atlas of renewable energy resources in Russia. Scientific publication]. Mosocow, 2015, 160 p.

(in Russ.).

Os'mak A.A., Serogin A.A. Vostochno-yevropeyskiy zhurnal peredovykh tekhnologiy, 2014, vol. 2, no. 8(68), pp. 57–61. (in Russ.).

Vassilev S.V., Vassileva C.G., Vassilev V.S. Fuel, 2015, vol. 158, pp. 330-350. DOI: 10.1016/j.fuel.2015.05.050.

Basu P. Biomass Gasification and Pyrolysis. Practical Design and Theory. Elsevier Inc., 2010, 365 p.

Alekhnovich A.N., Bogomolov V.V., Artem'yeva N.V. Teploenergetika, 2001, no. 2, pp. 26–33. (in Russ.).

Vititnev Yu.I., Uchitel' A.D., Kormer M.V., Lyalyuk V.P., Lyakhova I.A., Shmel'tser Ye.O. Koks i khimiya, 2013, no. 5, pp. 13–19. (in Russ.).

Kaliyan N., Morey R.V. Bioresource technology, 2010, vol. 101, no. 3, pp. 1082–1090. DOI: 10.1016/j.biortech.2009.08.064.

Sudakova I.G., Rudenko N.B. Journal of Siberian Federal University. Chemistry, 2015, no. 4, pp. 499–513. DOI: 10.17516/1998-2836-2015-8-4-499-513. (in Russ.).

Gil M.V., Oulego P., Casal M.D., Pevida C., Pis J.J., Rubiera F. Bioresource technology, 2010, vol. 101, no. 22, pp. 8859–8867. DOI: 10.1016/j.biortech.2010.06.062.

Varfolomeyev S.D., Moiseyev I.I., Myasoyedov B.F. Vestnik Rossiyskoy akademii nauk, 2009, vol. 79, no. 7, pp. 595–604. (in Russ.).

Popel' O.S. Energiya: ekonomika, tekhnika, ekologiya, 2016, no. 11, pp. 2–11. (in Russ.).

Weiland P. Applied microbiology and biotechnology, 2010, vol. 85, no. 84, pp. 849–860. DOI: 10.1007/s00253-009-2246-7.

Tsyganova S.I., Mazurova Ye.V., Bondarenko G.N., Fetisova O.Yu. Khimiya Rastitel'nogo Syr'ya, 2016, no. 4, pp. 143–150. (in Russ.).

Mohan D., Pittman C.U., Steele P.H. Energy & Fuels, 2006, vol. 20, no. 3, pp. 848–889. DOI: 10.1021/ef0502397.

Babkin V.A., Ostroukhova L.A., Kopylova L.I. Khimiya Rastitel'nogo Syr'ya, 2016, no. 1, pp. 121–126. DOI: 10.14258/jcprm.2016011193. (in Russ.).

Kuz'mina R.I., Shtykov S.N., Pankin K.Ye., Ivanova Yu.V., Panina T.G. Khimiya Rastitel'nogo Syr'ya, 2010, no. 3, pp. 61–65. (in Russ.).

GOST 3168-93. Toplivo tverdoye mineral'noye. Metody opredeleniya vykhoda produktov polukoksovaniya. [GOST 3168-93. Solid mineral fuel. Methods for determining the yield of semi-coking products.]. Moscow, 1995, 20 p. (in Russ.).

Wu C., Budarin V.L., Gronnow M.J., De Bruyn M., Onwudili J.A., Clark J.H., Williams P.T. Journal of Analytical and Applied Pyrolysis, 2014, vol. 107, pp. 276–283. DOI:10.1016/j.jaap.2014.03.012.

Yefremov A.A., Offan K.B., Kiselev V.P. Khimiya Rastitel'nogo Syr'ya, 2002, no. 3, pp. 43–47. (in Russ.).

Rabinovich V.A., Khavin Z.Ya. Kratkiy khimicheskiy spravochnik. [Brief chemical reference]. Yekaterinburg, 2015, 432 p. (in Russ.).

Geletukha G.G., Zheleznaya T.A. Analiticheskaya zapiska Bioenergeticheskoy assotsiatsii Ukrainy, 2014, no. 7, pp. 1–35. (in Russ.).

Parshukov V.I., Yefimov N.N., Ikonnikov V.K., Rusakevich I.V. Tekhnologii i tekhnicheskiye sredstva mekhanizirovannogo proizvodstva produktsii rasteniyevodstva i zhivotnovodstva, 2018, no. 95, pp. 66-77. DOI: 10.24411/0131-5226-2018-10033. (in Russ.).

Gafurov N.M., Khismatullin R.F. Innovatsionnaya nauka, 2016, no. 5, pp. 65–66. (in Russ.).

Czernik S., Bridgwater A.V. Energy & Fuels, 2004, vol. 18, pp. 590–598. DOI: 10.1021/ef034067u.

Yang H., Yan R., Chen H., Lee D.H., Zheng C. Fuel, 2007, vol. 86, pp. 1781–1788. DOI: 10.1016/j.fuel.2006.12.013.

El-Hendawy A-N.A. Journal of Analytical and Applied Pyrolysis, 2006, vol. 75, no. 2, pp. 159–166. DOI: 10.1016/j.jaap.2005.05.004.

Yang H., Yan R., Chen H., Zheng C., Lee D.H., Liang D.T. Energy & Fuels, 2006, vol. 20, pp. 388–393. DOI: 10.1021/ef0580117.

Milosavljevic I., Oja V., Suuberg E.M. Industrial and Engineering Chemistry Research, 1996, vol. 35, no. 3, pp. 653–662. DOI: 10.1021/ie950438l.

William S.L.M., Michael J.A.Jr., Piroska S., Gabor V., Borbala Z. Ind. Eng. Chem. Res., 1992, vol. 31(4), pp. 1162–1166. DOI: 10.1021/ie00004a027.

Tabakaev R.B., Astafev A.V., Dubinin Yu.V., Yazykov N.A., Zavorin A.S., Yakovlev V.A. Journal of Thermal Anal-ysis and Calorimetry, 2018, vol. 134, no. 2, pp. 1045–1057. DOI: 10.1007/s10973-018-7562-7.

Published
2020-06-10
How to Cite
1. Astaf’yev A. V., Gaydabrus M. A., Ibrayeva K. T., Tabakayev R. B., Yazykov N. A., Zavorin A. S. RESEARCH OF WHEAT BRAN AND PRODUCTS OF THEIR PYROLYSIS FOR EVALUATION OF ENERGY USE POSSIBILITY // chemistry of plant raw material, 2020. № 2. P. 323-332. URL: http://journal.asu.ru/cw/article/view/5874.
Section
Technology