SYNTHESIS OF BIOLOGICALLY ACTIVE COMPOUNDS IN HAIRY ROOTS OF ASTRAGALUS PENDULIFLORUS LAM.

UDC 582.736:581.143.6:577.13

  • Elena Valerievna Ambros Central Siberian Botanical Garden SB RAS https://orcid.org/0000-0002-2119-6503 Email: ambros_ev@mail.ru
  • Ol'ga Viktorovna Kotsupiy Central Siberian Botanical Garden SB RAS Email: olnevaster@gmail.com
  • Tat'yana Abdulkhailovna Kukushkina Central Siberian Botanical Garden SB RAS Email: kukushkina-phyto@yandex.ru
  • Tat'yana Vital'yevna Zheleznichenko Central Siberian Botanical Garden SB RAS Email: zhelez05@mail.ru
  • Tat'yana Ivanovna Novikova Central Siberian Botanical Garden SB RAS Email: tin27@mail.ru
Keywords: Astragalus penduliflorus Lam., hairy roots, prolonged cultivation, tannins, catechins, pectins, protopectins, triterpenoid saponins, flavonoids, HPLC

Abstract

Agrobacterium rhizogenes – mediated genetic transformation of medicinal plant A. penduliflorus Lam. using A4-RT, R-1601, 15834 SWISS strains was performed. The competences for transformation of three types of explants: hypocotyls, cotyledons, and primary shoots were tested. The virulent strain (15834 SWISS) and types of explants for transformation (primary shoots and cotyledons) with high growth index (I) were determined. The frequency of transformation of cotyledons by strain 15834 SWISS after 4 weeks of cultivation was 15.4% (I = 59.6), hypocotyls – 9.1% (I = 7.3) and primary shoots – 37.5% (I = 21.0). After 8 weeks of cultivation I increased 4.5 times for primary shoots (I = 94.5 ± 0.20) and cotyledons (I = 265.8 ± 0.35), for cultures from hypocotyls – 5.97 times (I = 43.6 ± 0.30). The roots’ transgenic status and the absence of agrobacterium contamination were confirmed by PCR analysis using rolB-, virC-specific primers. The lines of hairy roots characterized by active increases of biomass with high content of biologically active metabolites were selected, moreover, the content of metabolites in hairy root cultures exceeded their content in the roots of introduced plants. The maximum accumulation of compounds was found in hairy roots obtained from primary shoots (pectins – up 7.8%, protopectins – up 15.3%) and cotyledons (tannins – up 16.1%, triterpenic saponins – up 30.5%) after 8 weeks of cultivation. High perfor-mance liquid chromatography (HPLC) analysis demonstrated that hydrolysates of extracts of hairy roots from primary shoots contained 2 flavonol aglycones – quercetin and isorhamnetin whereas ethanol extracts were characterized by presence of quercetin and 4 flavonoid components. In hairy roots from cotyledons the maximum of phenolic compounds (PСs) content did not differ significantly at 8 and 12 weeks of cultivation (1.38 ± 0.01 and 1.49 ± 0.06% of dry weight, respectively). The content of PCs in hairy roots from primary shoots increased two-fold from 4 to 12 weeks of cultivation (up 1.24 ± 0.18%). To the best of our knowledge, this is the first efficient protocol reported for the establishment of hairy root cultures in A. penduliflorus using A. rhizogenes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Elena Valerievna Ambros, Central Siberian Botanical Garden SB RAS

кандидат биологических наук, научный сотрудник

Ol'ga Viktorovna Kotsupiy, Central Siberian Botanical Garden SB RAS

кандидат биологических наук,  научный сотрудник

Tat'yana Abdulkhailovna Kukushkina, Central Siberian Botanical Garden SB RAS

кандидат биологических наук, старший научный сотрудник

Tat'yana Vital'yevna Zheleznichenko, Central Siberian Botanical Garden SB RAS

кандидат биологических наук, старший научный сотрудник

Tat'yana Ivanovna Novikova, Central Siberian Botanical Garden SB RAS

доктор биологических наук, заведующий лабораторией

References

Peshkova G.A., Semeystvo Fabaceae, ili Leguminosae – Bobovyye. Flora Tsentral'noy Sibiri [Family Fabaceae, or Le-guminosae – Legumes. Flora of Central Siberia], Novosibirsk, 1979, vol. 2, pp. 600–605. (in Russ.)

Peshkova G.A., Florogeneticheskiy analiz stepnoy flory gor Yuzhnoy Sibiri [Phlorogenetic analysis of the steppe flora of the mountains of southern Siberia], Novosibirsk, 2001, 192 p. (in Russ.)

Yakovlev G.P., Sytin A.K., Roskov Yu.R., Legumes of Northern Eurasia, Kew, 1996, pp. 97–268.

Vydrina S.N., Sistematicheskiye zametki, 1992, no. 89, pp. 1–3. (in Russ.)

Zhu X-Y., Nordic Journal of Botany, 2003, vol. 23, no. 3, pp. 283–294. DOI: 10.1111/j.1756-1051.2003.tb00395.x.

Ma X.Q., Duan J.A., Zhu D.Y., Dong T.T.X., Tsim K.W.K., Phytochemistry, 2000, vol. 54, no. 4, pp. 363–368. DOI: 10.1016/S0031-9422(00)00111-4.

Chater A.O. Astragalus penduliflorus Lam. In: Tutin T.G. et al. (Eds.). Flora Europaea, Vol. II. Cambridge University Press; Cambridge, 1968, pp. 114–115.

Rastitel'nyye resursy SSSR: Tsvetkovyye rasteniya, ikh khimicheskiy sostav, ispol'zovaniye: cemeystva Hydran-geaceae – Haloragaceae [USSR Plant Resources: Flowering plants, their chemical composition, use: Hydran-geaceae – Halora-gaceae families], Leningrad, 1987, vol. 3, 326 p.

The State Pharmacopoeia Commission. Pharmacopoeia of the people’s republic of China. Vol. I. China Medical Science and Technology Press; Beijing, 2010, 212 p.

Lysiuk R., Darmohray R., International Journal of Pharmacology, Phytochemistry and Ethnomedicine, 2016, vol. 3, pp. 46–53, DOI: 10.18052/www.scipress.com/IJPPE.3.46.

Clement-Kruzel S., Hwang S.A., Kruzel M.C., Dasgupta A., Actor J.K., Journal of Medicinal Food, 2008, vol. 11, pp. 493–498.

Ionkova I., Momekov G., Proksch P., Fitoterapia, 2010, vol. 81, no. 5, pp. 447–451. DOI: 10.1016/j.fitote.2009.12.007.

Jia R., Cao L., Xu P., Jeney G., Yin G., Fish Physiology and Biochemistry, 2012, vol. 38, no. 3, pp. 871–881. DOI: 10.1007/s10695-011-9575-z.

Ko J.K., Auyeung K.K., Gastroenterology, 2013, vol. 144, pp. 290–291.

Huang W.M., Liang Y.Q., Tang L.J., Ding Y., Wang X.H., Experimental and Therapeutic Medicine, 2013, vol. 6, no. 1, pp. 199–203. DOI: 10.3892/etm.2013.1074.

Jung Y., Jerng U., Lee S., Chinese Journal of Integrative Medicine, 2016, vol. 22, no. 3, pp. 225–236. DOI: 10.1007/s11655-015-2324-x.

Ma X.Q., Shi Q., Duan J.A., Dong T.T., Tsim K.W., Journal of Agricultural and Food Chemistry, 2002, vol. 50, no. 17, pp. 4861–4866.

Dungerdorzh D., Petrenko V.V., Deryugina L.I., Khimiya prirodnykh soyedineniy, 1974, no. 2, p. 250. (in Russ.)

Kiselova A.V., Volkhonskaya T.A., Kiselov V.Ye., Biologicheski aktivnyye veshchestva lekarstvennykh rasteniy Yuzh-noy Sibiri [Biologically active substances of medicinal plants of Southern Siberia], Novosibirsk, 1991, 136 p.

Song Ch., Zheng Zh., Liu D., Hu Zh., Sheng W., Zhiwu Xuebao, 1997, vol. 39, no. 12, pp. 1169–1171.

Lin L.-Z., He X.-G., Lindenmaier M., Nolan G., Yang J., Cleary M., Qiu S.-X., Cordell A. G., Journal of Chromatog-raphy A, 2000, vol. 876, no. 1–2, pp. 87–95.

Im k., Kim M.-J., Jung T.-K., Yoon K.-S., KSBB journal, 2010, vol. 25, no. 3, pp. 271–276.

Du M., Wu X.J., Ding J., Hu Z.B., White K.N., Branford-White C.J., Biotechnology Letters, 2003, vol. 25, no. 21, pp. 1853–1856. DOI: 10.1023/A:1026233728375.

Dhiman N., Patial V., Bhattacharya A., Biotechnological approaches for medicinal and aromatic plants: conservation, genetic improvement and utilization, Springer; Singapore, 2018, pp.87–155. DOI: 10.1007/978-981-13-0535-1_5.

Jiao J., Gai Q.Y., Fu Y.J., Ma W., Peng X., Tan S.N., Efferth T., Journal of Agricultural and Food Chemistry, 2014, vol. 62, no. 52, pp. 12649–12658. DOI: 10.1021/jf503839m.

Gamborg O.L., Eveleigh D.E., Canadian Journal of Biochemistry, 1968, vol. 46, no. 5, pp. 417–421.

Tepfer D., Cell, 1984, vol. 37, no. 3, pp. 959–967. DOI: 10.1016/0092-8674(84)90430-6.

Suman P.S.K., Ajit K.S., Darokar M.P., Sushil K., Plant Molecular Biology Reporter, 1999, vol. 17, pp. 1–7. DOI: 10.1023/A:10075 28101 452.

Zheleznichenko T., Banaev E., Asbaganov S., Voronkova M., Kukushkina T., Filippova E.., Mazurkova N., Shish-kina L., Novikova T. Biotech., 2018, vol. 8, pp. 260. DOI: 10.1007/s13205-018-1280-5.

Godoy-Hernandez G., Vazquez-Flota F.A., Plant Cell Culture Protocols. Series: Methods in Molecular Biology, 2006, vol. 318, no. 2, pp. 51–58. DOI: 10.1385/1-59259-959-1:051.

Halder M., Roychowdhury D., Jha S., V. Srivastava et al. (Eds.). Hairy roots: an effective tool of plant biotechnology, Springer Nature Singapore Pte Ltd., Singapore, 2018, pp. 21–44. DOI: 10.1007/978-981-13-2562-5_2.

Sidneeva O.V., Turczaninowia, 2005, vol. 8, no. 4, pp. 73–82. (in Russ.)

Flores H.E., Hoy M.W., Pickard J.J., Trends in Biotechnology, 1987, vol. 5, no. 3, pp. 64–69. DOI: 10.1016/S0167-7799(87)80013-6.

Fukui H., Feroj-Hasan A.F.M., Ueoka T., Kyo M., Phytochemistry, 1998, vol. 47, no. 6, pp. 1037–1039. DOI: 10.1016/S0031-9422(98)80067-8.

Sevón N., Oksman-Caldentey K.M., Planta Medica, 2002, vol. 68, no. 10, pp. 859–868. DOI: 10.1055/S-2002-34924.

Spena A, Schell J., Molecular and general genetics, 1987, vol. 206, no. 3, pp. 436–440. DOI: 10.1007/BF00428883.

Dehio C., Schell J., Molecular and general genetics, 1993, vol. 241, no. 3–4, pp. 359–366.

Published
2020-06-10
How to Cite
1. Ambros E. V., Kotsupiy O. V., Kukushkina T. A., Zheleznichenko T. V., Novikova T. I. SYNTHESIS OF BIOLOGICALLY ACTIVE COMPOUNDS IN HAIRY ROOTS OF ASTRAGALUS PENDULIFLORUS LAM. // chemistry of plant raw material, 2020. № 2. P. 209-221. URL: http://journal.asu.ru/cw/article/view/6284.
Section
Biotechnology