DELIGNIFICATION AND PHYSICOCHEMICAL CHARACTERISTICS OF NON-WOOD BIOMASS

UDC 661.728.8:634.511:634.21

Keywords: lignin, cellulose, pre-treatment, specific surface, pore volume, non-wood biomass

Abstract

The paper presents the of influence peroxide ammonium, alkali, nitric acid, organosolvent and "aqueous ammonia soaking" (AAS) delignification methods on the degree of removal of lignin from non-wood lignocellulosic waste walnut shell Juglans Regia L. and apricot seed Prunus Armeniaca L. It is shown that the maximum degree of delignification (94%) is achieved when processing raw materials with 42 wt% HNO3 and 20 wt% NaOH; the minimum is at peroxide-ammonia treatment (80%). We found that the greatest specific surface area (202 m2∙g-1) provided by the application 42 wt% HNO3, and a maximum iodine number (32 mg∙g-1) when using 25 wt% NH4OH. Delignification significantly increases the specific surface area (5 m2∙g-1 to 120–200 m2∙g-1) iodine number (6.35 mg∙g-1 to 25 to 32 mg∙g-1) of biomass, however, at 45–55% reduced exchange capacity of the material. The obtained cellulose intermediates having acceptable physical and chemical characteristics can be used for further preparation of available sorbents or ion exchange materials. In accordance with the principles of "green chemistry", it is proposed to dispose the spent delignification solutions from AAS and nitric acid methods in liquid nitrogen fertilizers producing.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Dmitriy Aleksandrovich Yelatontsev, Dnipro State Technical University

кандидат технических наук, старший преподаватель

Elena Vladimirovna Ivanyuk, Igor Sikorsky Kyiv Polytechnic Institute

кандидат технических наук, доцент

References

Li W., Amos K., Li M., Pu Y., Debolt S., Ragauskas A.J., Shi J. Biotechnol. Biofuels., 2018, vol. 11, pp. 304-318. DOI: 10.1186/s13068-018-1305-7.

Hassan S.S., Williams G.A., Jaiswal A.K. Biores. Tech., 2018, vol. 262, pp. 310–318. DOI: 10.1016/j.biortech.2018.04.099.

Ripu D.K., Kadirvelu K., Kannan G.K. Int. J. Environ. Waste Manag., 2019, vol. 23, pp. 274–299. DOI: 10.1504/IJEWM.2019.10019833.

Kumar A.K., Sharma S. Bioresour. Bioprocess, 2017, vol. 4, pp. 7–26. DOI: 10.1186/s40643-017-0137-9.

Kucharska K., Rybarczyk P., Hołowacz I., Łukajtis R., Glinka M., Kamiński M. Molecules, 2018, vol. 23, pp. 2937–2969. DOI: 10.3390/molecules23112937.

Arenas-Cárdenas P., López-López A., Moeller-Chávez G.E., Leon-Becerril E. Waste. Biomass. Valor., 2017, vol. 8, pp. 161–181. DOI: 10.1007/s12649-016-9559-4.

Ramrakhiani L., Ghosh S., Majumdar S. Appl. Biochem. Biotechnol., 2016, vol. 180, pp. 41–78. DOI: 10.1007/s12010-016-2083-y.

Xie R., Jin Y., Chen Y., Jiang W. Water Sci. Technol., 2017, vol. 76, pp. 3022–3034. DOI: 10.2166/wst.2017.471.

Corbett D.B., Kohan N., Machado G., Jing C., Nagardeolekar A., Bujanovic B. M. Energies, 2015, vol. 8, pp. 9640–9654. DOI: 10.3390/en8099640.

Bagretsov V.F., Chistyakov A.D., Petrova Ye.A. Atomnaya energiya, 1969, vol. 26, no. 5, pp. 469–471. DOI: 10.1007/bf01174116. (in Russ.).

Andronov O.B., Krinitsyn A.P., Strikhar' O.L. Radiokhimiya, 2002, vol. 44, no. 6, pp. 553–557. DOI: 10.1023/a:1022344813163. (in Russ.).

Bykov G.L., Yershov B.G. Zhurnal prikladnoy khimii, 2010, vol. 83, no. 2, pp. 317–320. DOI: 10.1134/s1070427210020254. (in Russ.).

Obolenskaya A.V., Yel'nitskaya Z.P., Leonovich A.A. Laboratornyye raboty po khimii drevesiny i tsellyulozy. [Labora-tory work on the chemistry of wood and cellulose]. Moscow, 1991, 320 p. (in Russ.).

Kinle X., Bader E. Aktivnyye ugli i ikh promyshlennoye primeneniye. [Activated carbons and their industrial applica-tions]. Leningrad, 1984, 216 p. (in Russ.).

Hegyesi N., Vada R.T., Pukánszky B. Appl. Clay Sci., 2017, vol. 146, pp. 50–55. DOI: 10.1016/j.clay.2017.05.007.

Polyanskiy N.G., Gorbunov G.V., Polyanskaya N.L. Metody issledovaniya ionitov. [Research methods of ion exchang-ers]. Moscow, 1976, 208 p. (in Russ.).

Yefanov M.V., Averin R.Yu. Khimiya prirodnykh soyedineniy, 2004, vol. 2, pp. 148–150. DOI: 10.1023/B:CONC.0000033939.81490.d2. (in Russ.).

Nepenin N.N., Nepenin Yu.N. Tekhnologiya tsellyulozy. V 3-kh t. T. III. Ochistka, sushka i otbelka tsellyulozy. Prochiye sposoby polucheniya tsellyulozy. [Cellulose technology. In 3 volumes. Vol. III. Pulp cleaning, drying and bleaching. Other methods for producing cellulose]. Moscow, 1994, 592 p. (in Russ.).

Vurasko A.V., Minakova A.R., Driker B.N. Khimiya Rastitel'nogo Syr'ya, 2010, no. 1, pp. 35-40. (in Russ.).

Zheng D., Zhang Y., Guo Y., Yue J. Polymers, 2019, vol. 11, pp. 1130–1143, DOI: 10.3390/polym11071130.

Bestani B., Benderdouche N., Benstaali B., Belhakem M., Addou A. Biores. Tech., 2008, vol. 99, no. 17, pp. 8441–8444, DOI: 10.1016/j.biortech.2008.02.053.

Kaya M., Şahin Ö., Saka C. Int. J. Chem. Reactor Engineer, 2017, vol. 16, no. 2, pp. 1–13, DOI: 10.1515/ijcre-2017-0060.

Patent 132298 (UK). 2019. (in Russ.).

Teixeira S., Delerue-Matos C., Santos L. Environ. Sci. Pollut. Res., 2012, vol. 19, pp. 3096–3106. DOI: 10.1007/s11356-012-0853-9.

Published
2020-10-22
How to Cite
1. Yelatontsev D. A., Ivanyuk E. V. DELIGNIFICATION AND PHYSICOCHEMICAL CHARACTERISTICS OF NON-WOOD BIOMASS // chemistry of plant raw material, 2020. № 3. P. 17-24. URL: http://journal.asu.ru/cw/article/view/7392.
Section
Biopolymers of plants