DELIGNIFICATION AND PHYSICOCHEMICAL CHARACTERISTICS OF NON-WOOD BIOMASS
UDC 661.728.8:634.511:634.21
Abstract
The paper presents the of influence peroxide ammonium, alkali, nitric acid, organosolvent and "aqueous ammonia soaking" (AAS) delignification methods on the degree of removal of lignin from non-wood lignocellulosic waste walnut shell Juglans Regia L. and apricot seed Prunus Armeniaca L. It is shown that the maximum degree of delignification (94%) is achieved when processing raw materials with 42 wt% HNO3 and 20 wt% NaOH; the minimum is at peroxide-ammonia treatment (80%). We found that the greatest specific surface area (202 m2∙g-1) provided by the application 42 wt% HNO3, and a maximum iodine number (32 mg∙g-1) when using 25 wt% NH4OH. Delignification significantly increases the specific surface area (5 m2∙g-1 to 120–200 m2∙g-1) iodine number (6.35 mg∙g-1 to 25 to 32 mg∙g-1) of biomass, however, at 45–55% reduced exchange capacity of the material. The obtained cellulose intermediates having acceptable physical and chemical characteristics can be used for further preparation of available sorbents or ion exchange materials. In accordance with the principles of "green chemistry", it is proposed to dispose the spent delignification solutions from AAS and nitric acid methods in liquid nitrogen fertilizers producing.
Downloads
Metrics
References
Li W., Amos K., Li M., Pu Y., Debolt S., Ragauskas A.J., Shi J. Biotechnol. Biofuels., 2018, vol. 11, pp. 304-318. DOI: 10.1186/s13068-018-1305-7.
Hassan S.S., Williams G.A., Jaiswal A.K. Biores. Tech., 2018, vol. 262, pp. 310–318. DOI: 10.1016/j.biortech.2018.04.099.
Ripu D.K., Kadirvelu K., Kannan G.K. Int. J. Environ. Waste Manag., 2019, vol. 23, pp. 274–299. DOI: 10.1504/IJEWM.2019.10019833.
Kumar A.K., Sharma S. Bioresour. Bioprocess, 2017, vol. 4, pp. 7–26. DOI: 10.1186/s40643-017-0137-9.
Kucharska K., Rybarczyk P., Hołowacz I., Łukajtis R., Glinka M., Kamiński M. Molecules, 2018, vol. 23, pp. 2937–2969. DOI: 10.3390/molecules23112937.
Arenas-Cárdenas P., López-López A., Moeller-Chávez G.E., Leon-Becerril E. Waste. Biomass. Valor., 2017, vol. 8, pp. 161–181. DOI: 10.1007/s12649-016-9559-4.
Ramrakhiani L., Ghosh S., Majumdar S. Appl. Biochem. Biotechnol., 2016, vol. 180, pp. 41–78. DOI: 10.1007/s12010-016-2083-y.
Xie R., Jin Y., Chen Y., Jiang W. Water Sci. Technol., 2017, vol. 76, pp. 3022–3034. DOI: 10.2166/wst.2017.471.
Corbett D.B., Kohan N., Machado G., Jing C., Nagardeolekar A., Bujanovic B. M. Energies, 2015, vol. 8, pp. 9640–9654. DOI: 10.3390/en8099640.
Bagretsov V.F., Chistyakov A.D., Petrova Ye.A. Atomnaya energiya, 1969, vol. 26, no. 5, pp. 469–471. DOI: 10.1007/bf01174116. (in Russ.).
Andronov O.B., Krinitsyn A.P., Strikhar' O.L. Radiokhimiya, 2002, vol. 44, no. 6, pp. 553–557. DOI: 10.1023/a:1022344813163. (in Russ.).
Bykov G.L., Yershov B.G. Zhurnal prikladnoy khimii, 2010, vol. 83, no. 2, pp. 317–320. DOI: 10.1134/s1070427210020254. (in Russ.).
Obolenskaya A.V., Yel'nitskaya Z.P., Leonovich A.A. Laboratornyye raboty po khimii drevesiny i tsellyulozy. [Labora-tory work on the chemistry of wood and cellulose]. Moscow, 1991, 320 p. (in Russ.).
Kinle X., Bader E. Aktivnyye ugli i ikh promyshlennoye primeneniye. [Activated carbons and their industrial applica-tions]. Leningrad, 1984, 216 p. (in Russ.).
Hegyesi N., Vada R.T., Pukánszky B. Appl. Clay Sci., 2017, vol. 146, pp. 50–55. DOI: 10.1016/j.clay.2017.05.007.
Polyanskiy N.G., Gorbunov G.V., Polyanskaya N.L. Metody issledovaniya ionitov. [Research methods of ion exchang-ers]. Moscow, 1976, 208 p. (in Russ.).
Yefanov M.V., Averin R.Yu. Khimiya prirodnykh soyedineniy, 2004, vol. 2, pp. 148–150. DOI: 10.1023/B:CONC.0000033939.81490.d2. (in Russ.).
Nepenin N.N., Nepenin Yu.N. Tekhnologiya tsellyulozy. V 3-kh t. T. III. Ochistka, sushka i otbelka tsellyulozy. Prochiye sposoby polucheniya tsellyulozy. [Cellulose technology. In 3 volumes. Vol. III. Pulp cleaning, drying and bleaching. Other methods for producing cellulose]. Moscow, 1994, 592 p. (in Russ.).
Vurasko A.V., Minakova A.R., Driker B.N. Khimiya Rastitel'nogo Syr'ya, 2010, no. 1, pp. 35-40. (in Russ.).
Zheng D., Zhang Y., Guo Y., Yue J. Polymers, 2019, vol. 11, pp. 1130–1143, DOI: 10.3390/polym11071130.
Bestani B., Benderdouche N., Benstaali B., Belhakem M., Addou A. Biores. Tech., 2008, vol. 99, no. 17, pp. 8441–8444, DOI: 10.1016/j.biortech.2008.02.053.
Kaya M., Şahin Ö., Saka C. Int. J. Chem. Reactor Engineer, 2017, vol. 16, no. 2, pp. 1–13, DOI: 10.1515/ijcre-2017-0060.
Patent 132298 (UK). 2019. (in Russ.).
Teixeira S., Delerue-Matos C., Santos L. Environ. Sci. Pollut. Res., 2012, vol. 19, pp. 3096–3106. DOI: 10.1007/s11356-012-0853-9.
Copyright (c) 2020 chemistry of plant raw material
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.