DIFFERENTIAL SCANNING CALORIMETRY OF LIQUID VEGETABLE

UDC 547-326:543.572.3: 543.544.43

  • Igor' Aleksandrovich Saranov Voronezh State University of Engineering Technologies Email: mr.saranov@mail.ru
  • Oleg Borisovich Rudakov Voronezh State Technical University Email: robi57@mail.ru
  • Konstantin Konstantinovich Polyansky Voronezh Branch of the Russian University of Economics G.V. Plekhanova Email: kaf-kit@vfreu.ru
  • Natal'ya Leonidovna Kleymenova Voronezh State University of Engineering Technologies Email: klesha78@list.ru
  • Aleksey Valer'yevich Vetrov Voronezh State University of Engineering Technologies Email: betalex545@mail.ru
Keywords: liquid vegetable oils, fatty acid composition, differential scanning calorimetry, gas-liquid chromatography

Abstract

The thermophysical properties of vegetable oils were studied by differential scanning calorimetry method was used to study the fatty acid composition of vegetable oils liquid at room temperature, such as amaranth (Amaránthus), corn (Zea mays), flax (Línum usitatíssimum), sunflower (Helianthus), rape (Brusss napor), milk thistle (Sílybum mariánum), saffron milk cap (Camelina sativa) and pumpkin (Cucurbita pepo). The temperatures of the endothermic peak maxima and their area on the DSC thermograms of these oils were established as characteristic thermal effects. The interconnection between thermal effects and fatty acid composition are revealed. On the melting curves of liquid vegetable oils, up to 5 endothermic peaks of different intensities were selected in the ranges -80÷-55 °C, -40÷-15 °C, -25÷-8 °C, -19÷+6 °C and -10÷+4 °C. The coordinates of the maxima of these peaks (Ti) and their area (Si) significantly correlate with the content (Wi,%) in the oils, primarily oleic, linoleic and linolenic acids, the total proportion of which in oils is from 75 to 92%. Using the DSC thermograms of rapeseed oil as an example, it is shown that the program separation of DSC peaks allows a multiple increase in the number of analytical signals, an increase in the reliability of identification of the fat phase, and identification of the main fractions of triglycerides. DSC as a method for identifying vegetable oils using modern thermal analysis instruments is simple to sample, has good reproducibility and can be an independent method for identifying and controlling the quality of vegetable oils.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Igor' Aleksandrovich Saranov, Voronezh State University of Engineering Technologies

кандидат технических наук, старший преподаватель кафедры информационной безопасности

Oleg Borisovich Rudakov, Voronezh State Technical University

доктор химических наук, заведующий кафедрой химии и химической технологии материалов

Konstantin Konstantinovich Polyansky, Voronezh Branch of the Russian University of Economics G.V. Plekhanova

доктор технических наук, профессор кафедры коммерции и товароведения

Natal'ya Leonidovna Kleymenova, Voronezh State University of Engineering Technologies

кандидат технических наук, доцент кафедры управления качеством и технологий водных биоресурсов

Aleksey Valer'yevich Vetrov, Voronezh State University of Engineering Technologies

инженер патентно-лицензионного отдела

References

O'Brien R. Zhiry i masla. Proizvodstvo, sostav i svoystvo, primeneniye. [Fats and oils. Production, composition and property, application]. St. Petersburg, 2007, 752 p. (in Russ.).

Rudakov O.B., Ponomarev A.N., Polyanskiy K.K., Lyubar' A.V. Zhiry. Khimicheskiy sostav i ekspertiza kachestva. [Fats. Chemical composition and quality examination]. Moscow, 2005, 312 p. (in Russ.).

An' V.N., Deyneka V.I., Khiyen Ch.T.N., Deyneka L.A., Rudakov O.B. Sorbtsionnyye i khromatograficheskiye protsessy. 2018, vol. 18, no. 6, pp. 816–824. (in Russ.).

Andrikopoulos N.K. Critical reviews in food science and nutrition, 2002, vol. 42, no. 5, pp. 473–505. DOI: 10.1080/20024091054229.

Jabeur H., Zribi A., Makni J., Rebai A., Abdelhedi R., Bouaziz M. Journal of agricultural and food chemistry, 2014, vol. 62, no. 21, pp. 4893–4904. DOI: 10.1021/jf500571n.

Nguen A.V., Deyneka V.I., Fam L.K., Doan F.L., Deyneka L.A., Vu A.T.N., Din' T.T.T. Khimiya rastitel'nogo syr'ya, 2019, no. 3, pp. 53–60. DOI: 10.14258/jcprm.2019034801. (in Russ.).

Nguen A.V., Popova A.A., Deineka V.I., Deineka L.A. Journal of Analytical Chemistry, 2017, vol. 72, no. 9, pp. 1007–1012. DOI: 10.1134/S1061934817090027.

Rudakov O.B., Saranov I.A., Polyanskiy K.K. Syrodeliye i maslodeliye, 2019, no. 3, pp. 51–53. (in Russ.).

Rudakov O.B., Saranov I.A., Polyanskiy K.K. Pererabotka moloka, 2018, no. 11(229), pp. 46–49. (in Russ.).

Rudakov O.B., Saranov I.A., Polyanskiy K.K. Molochnaya promyshlennost', 2018, no. 11, pp. 38–40. (in Russ.).

Rudakov O.B., Saranov I.A., Polyanskiy K.K. Analitika i kontrol', 2019, vol. 23, no. 1, pp. 127‒135. DOI: 10.15826/analitika.2019.23.1.010. (in Russ.).

Van Wetten I.A., Van Herwaarden A.W., Splinter R., Boerrigter-Eenling R., Van Ruth S.M. Thermochimica Acta, 2015, vol. 603, pp. 237–243. DOI: 10.1016/j.tca.2014.11.030.

Hu J., Wei F., Dong X.-Y. et al. Journal of separation science, 2013, vol. 36, no. 2, pp. 288–300. DOI: 10.1002/jssc.201200567.

Zhang Z.-S., Li D., Zhang L.-X., Liu Y.-l., Wang X.-d. Journal of thermal analysis and calorimetry, 2014, vol. 117, no. 3, pp. 2129–2135. DOI: 10.1007/s10973-013-3270-5.

Chatziantoniou S.E., Triantafillou D.J., Karayannakidis P.D., Diamantopoulos E. Thermochimica Acta, 2014, vol. 576, pp. 9–17. DOI: 10.1016/j.tca.2013.11.014.

Tan C.P., Cheman Y.B. JAOCS, 2000, vol. 77, no. 2, pp. 143–155. DOI: 10.1007/s11746-000-0024-6.

Tomaszewska-Gras J. Food Control, 2016, vol. 60, no. 2, pp. 629–635.

Published
2020-12-21
How to Cite
1. Saranov I. A., Rudakov O. B., Polyansky K. K., Kleymenova N. L., Vetrov A. V. DIFFERENTIAL SCANNING CALORIMETRY OF LIQUID VEGETABLE // chemistry of plant raw material, 2020. № 4. P. 157-164. URL: http://journal.asu.ru/cw/article/view/7603.
Section
Low-molecular weight compounds