PROSPECTS FOR DEEP CULTIVATION OF FOMITOPSIS PINICOLA (SW.) P. KARST. ON HYDRODYNAMIC AC-TIVATED PLANT WASTE

UDC 579.66

  • Igor' Nikolayevich Pavlov Institute of Forest named after V.N. Sukachev SB RAS, FRC KSC SB RAS; Siberian State University of Science and Technology named after academician M.F. Reshetneva Email: forester24@mail.ru
  • Yuliya Aleksandrovna Litovka Institute of Forest named after V.N. Sukachev SB RAS, FRC KSC SB RAS; Siberian State University of Science and Technology named after academician M.F. Reshetneva Email: litovkajul@rambler.ru
  • Ekaterina Alekseyevna Litvinova Siberian State University of Science and Technology named after academician M.F. Reshetneva; Krasnoyarsk Scientific Center SB RAS Email: litvinovaek22@ya.ru
  • Stefaniya Mikhaylovna Petrenko Krasnoyarsk Scientific Center SB RAS Email: stefaniya_vuytovich@mail.ru
  • Rustam Khamidzhanovich Enazarov Институт леса им. В.Н. Сукачева СО РАН, ФИЦ КНЦ СО РАН Email: Rusya955@mail.ru
Keywords: basidiomycetes, xylotrophs, Fomitopsis pinicola, plant waste, hydrodynamic activation, solid-phase and deep cultivation, cellulolytic enzymes, carboxymethyl cellulose

Abstract

The results of solid-phase and deep cultivation of the Siberian strain Fp6-17 Fomitopsis pinicola (Sw.) P. Karst. are presented. Growth parameters were determined on cellulose-containing agarized media and plant substrates with the addition of a solid phase after hydrodynamic activation of fir needles and sawdust of birch. Radial growth rate 3.0–4.3 mm / day; growth coefficient 37–64. Changes in polysaccharides in activated birch sawdust during fermentation noted, despite the low growth coefficient of the fungus. After hydrodynamic activation, the content of easily hydrolysable polysaccharides increased by 9 %, the proportion of hardly hydrolysable polysaccharides decreased by 8%. After further solid-phase cultivation, the content of easily and hardly hydrolysable polysaccharides decreased by 10 and 23%, respectively. The conditions for the deep cultivation of the strain Fp6-17 on a modified Norkrans medium with microcrystalline cellulose selected. At 26 °C and a pH of 4.6 on the seventh day, the maximum activity of carboxymethyl cellulase was 13.6 units / ml; biomass yield – 16.2 g/l. The optimal composition of the solid phase medium was selected after hydrodynamic processing of fir needles and sawdust of birch with enrichment of (NH4)2SO4. The maximum activity of the enzyme was 14.2 u/ml. With high enzymatic activity in the culture fluid, the formation of small globules with a diameter of up to 5 mm and a smaller amount of biomass is noted. At lower enzyme indices, in most cases a greater increase in biomass recorded due to the formation of large ellipsoid pellets with a fringed edge.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Igor' Nikolayevich Pavlov, Institute of Forest named after V.N. Sukachev SB RAS, FRC KSC SB RAS; Siberian State University of Science and Technology named after academician M.F. Reshetneva

доктор биологических наук, профессор, заведующий лабораторией лесных культур, микологии и фитопатологии, заместитель директора по научной работе, заведующий кафедрой химической технологии древесины и биотехнологии, тел. (391) 227-36-54

Yuliya Aleksandrovna Litovka, Institute of Forest named after V.N. Sukachev SB RAS, FRC KSC SB RAS; Siberian State University of Science and Technology named after academician M.F. Reshetneva

доктор биологических наук, старший научный сотрудник, профессор кафедры химической технологии древесины и биотехнологии, тел. (391) 227-36-54

Ekaterina Alekseyevna Litvinova, Siberian State University of Science and Technology named after academician M.F. Reshetneva; Krasnoyarsk Scientific Center SB RAS

ассистент кафедры химической технологии древесины и биотехнологии, младший научный сотрудник лаборатории геномных исследований и биотехнологии

Stefaniya Mikhaylovna Petrenko, Krasnoyarsk Scientific Center SB RAS

младший научный сотрудник лаб. геномных исследований и биотехнологии

Rustam Khamidzhanovich Enazarov, Институт леса им. В.Н. Сукачева СО РАН, ФИЦ КНЦ СО РАН

младший научный сотрудник лаборатории геномных исследований и биотехнологии

References

Rabinovich M.L., Bolobova A.V., Kondrashchenko V.I. Teoreticheskiye osnovy biotekhnologii drevesnykh kompo-zitov: Kn. I. Drevesina i razrushayushchiye yeye griby. [Theoretical foundations of biotechnology of wood composites: Book. Ι. Wood and fungi that destroy it]. Moscow, 2001, 264 p. (in Russ.).

Shah F., Mali T., Lundell T. Applied and Environmental Microbiology, 2018, vol. 84(8), e02662-17. DOI: 10.1128/AEM.02662-17.

Shevkoplyas V.N., Vovk N.V., Mezentseva T.V., Boyko M.I. Promyshlennaya botanika, 2004, vol. 4, pp. 256–262.

Vogel S., Alvarez B., Bässler C. et al. Fungal Ecology, 2017, vol. 27, pp. 182–188. DOI: 10.1016/j.funeco.2016.12.007.

Shin K., Kim Y., Marimuthu J., Lee J.-K., Kim Y-S. J. Microbiol. Biotechnol., 2010, vol. 20 (12), pp. 1681–1688. DOI: 10.4014/jmb.1008.08009.

Shin K., Marimuthu J., Lee J.-K., Kim Y-S. J. Microbiol. Biotechnol., 2010, vol. 20 (10), pp. 1415–1423. DOI: 10.4014/jmb.1003.03031.

Joo A.R., Jeya M., Lee K.M., Sim W.I., Kim J.S., Kim I.W., Kim Y.S., Oh D.K., Gunasekaran P., Lee J.K. Appl. Mi-crobiol Biotechnol., 2009, vol. 83(2), pp. 285–294. DOI: 10.1007/s00253-009-1861-7.

Litovka YU.A., Pavlov I.N., Ryazanova T.V., Gazizulina A.V., Chuprova N.A. Khimiya rastitel'nogo syr'ya, 2018, no. 1, pp. 193–199. DOI: 10.14258/jcprm.2018012729.

Yoon J.-J., Cha Ch.-J., Kim Y.-S., Kim W. Biotechnology Letters, 2008, vol. 30(8), pp. 1373–1378. DOI: 10.1007/s10529-008-9715-4.

Gu J.-M., Park S.-S. Korean Journal of Microbiology and Biotechnology, 2013, vol. 41(2). DOI: 10.4014/kjmb.1301.01007.

Park A.R., Park J.-H., Ahn H.-J. et al. Mycobiology, 2015, vol. 43(1), pp. 57–62. DOI: 10.5941/MYCO.2015.43.1.57.

Shin K., Kim T.-J., Kim Y.-K., Kim Y.-S. Journal of the Korean Wood Science and Technology, 2010, vol. 38 (3), pp. 251–261. DOI: 10.5658/WOOD.2010.38.3.251.

Mali T., Mäki M., Hellén H. et al. FEMS Microbiology Ecology, 2019, vol. 95(9). DOI: 10.1093/femsec/fiz135.

Wu B., Gaskell J., Held B.W. et al. Applied and Environmental Microbiology, 2018, vol. 84(16), e00991-18. DOI: 10.1128/AEM.000991-18.

Park N., Park S.-Sh. International journal of biological macromolecules, 2014, vol. 70, pp. 583–589. DOI: 10.1016/j.ijbiomac.2014.06.019.

Park N., Park S.-S. Korean Journal of Microbiology and Biotechnology, 2009, vol. 37(1), pp. 62–68.

Purnomo A.S., Mauliddawati V.T., Khoirudin M. et al. International journal of Environmental Science and Technolo-gy, 2019, vol. 16, pp. 7555–7564. DOI: 10.1007/s13762-019-02484-3.

Tsujiyama S., Okada A. Biotechnology Letters, 2013, vol. 35(11), pp. 1907–1911. DOI: 10.1007/s10529-013-1281-8.

Pertile E., Zamarsky P. IOP Conference Series Earth and Environmental Science, 2020, vol. 444, 012043. DOI: 10.1088/1755-1315/444/1/012043.

Sariwati A., Purnomo A. S., Kamei I. Current Microbiology, 2017, vol. 74(4), pp. 1068–1075. DOI: 10.1007/s00284-017-1286-y.

Sariwati A., Purnomo A.S. Indonesian Journal of Chemistry, 2018, vol. 18(1), p. 75. DOI: 10.22146/ijc.25158

Metody eksperimental'noy mikologii [Methods of experimental mycology], ed. V.I. Bilay. Kiev, 1982, 550 p. (in Russ.).

Alves E., Lucas G.C., Pozza E.A., Alves M.de C. Laboratory Protocols in Fungal Biology: Current Methods in Fun-gal Biology. Springer Science + Business Media, LLC, 2013, pp. 133–150.

Bukhalo A.S. Vysshiye s"yedobnyye bazidiomitsety v chistoy kul'ture. [Higher edible Basidiomycetes in pure culture]. Kiev, 1988, 144 p. (in Russ.).

Riazanova T.V., Chuprova N.A., Isaeva E.V. Wood Chemistry, LAP LAMBERT Academic Publishing, 2012, 428 p.

Sinitsyn A.P., Gusakov A.V., Chernoglazov V.M. Biokonversiya lignotsellyuloznykh materialov. [Bioconversion of lignocellulosic materials]. Moscow, 1995, 224 p. (in Russ.).

Bradford M.M. Anal. Biochem., 1976, vol. 72, pp. 248–254.

Published
2020-12-21
How to Cite
1. Pavlov I. N., Litovka Y. A., Litvinova E. A., Petrenko S. M., Enazarov R. K. PROSPECTS FOR DEEP CULTIVATION OF FOMITOPSIS PINICOLA (SW.) P. KARST. ON HYDRODYNAMIC AC-TIVATED PLANT WASTE // chemistry of plant raw material, 2020. № 4. P. 385-394. URL: http://journal.asu.ru/cw/article/view/8400.
Section
Technology