PECULIARITIES OF SYNTHESIS AND ANTIMICROBIAL PROPERTIES OF GUANIDINE-CONTAINING CAR-BOXYMETHYLCELLULOSE DERIVATIVES

UDC 541.6.69:615.01

  • Oliy Ravshanovich Akhmedov Institute of Bioorganic Chemistry of the Uzbek Academy of Sciences Email: oliy86@bk.ru
  • Shavkat Abduganievich Shomurotov Institute of Bioorganic Chemistry of the Uzbek Academy of Sciences Email: shsha@mail.ru
  • Abbaskhan Sabirkhanovich Turaev Institute of Bioorganic Chemistry of the Uzbek Academy of Sciences Email: abbaskhan@mail.ru
Keywords: macromolecule, Na-carboxymethylcellulose, guanidine, nucleophilic substitution, azomethine bond, reduction, hydrolysis, antimicrobial activity

Abstract

The article presents data on the synthesis and antimicrobial properties of guanidine-containing carboxymethylcellulose derivatives with different physical and chemical characteristics. The regularities of the reaction of nucleophilic substitution of aldehyde groups of modified Na-carboxymethylcellulose (Na-CMC) by guanidine under different conditions are studied. Based on the results obtained, it was found that the limit replacement of reactive electrophilic groups with nucleophilic reagent depends on the pH value of the medium, molar ratio of guanidine and the degree of oxidation of cellulose ester. By varying the reaction conditions and the number of aldehyde groups in the oxidized Na-CMC composition, the azometin derivatives differing in the content of nitrogen-containing fragments in the polymer chain were obtained. Chemical restoration of labile azomethine bonds was performed and water-soluble derivatives containing strong amino-bound guanidine groups were synthesized. The study shows and substantiates the influence of structural indices (degree of substitution, quantitative guanidine content, pKα values and nature of counterion) of macromolecular systems on antibacterial and antifungal properties. The developed approach of synthesis opens prospects for creation of antimicrobial derivatives with regulated physical and chemical characteristics and set biologically active properties.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Oliy Ravshanovich Akhmedov, Institute of Bioorganic Chemistry of the Uzbek Academy of Sciences

PhD, старший научный сотрудник

Shavkat Abduganievich Shomurotov, Institute of Bioorganic Chemistry of the Uzbek Academy of Sciences

доктор химических наук, ведущий научный сотрудник

Abbaskhan Sabirkhanovich Turaev, Institute of Bioorganic Chemistry of the Uzbek Academy of Sciences

доктор химических наук, академик, главный научный сотрудник

References

Dang X., Liu P., Yang M., Deng H., Shan Z., Zhen W. Cellulose, 2019, vol. 26, pp. 9503–9515. DOI: 10.1007/s10570-019-02747-9.

Asere T.G., Mincke S., Folens K. Reactive and Functional Polymers, 2019, vol. 141, pp. 145–154. DOI: 10.1016/j.reactfunctpolym.2019.05.008.

Akhmedov O.R., Shomurotov Sh.A., Turayev A.S. Uzbekskiy khimicheskiy zhurnal, 2013, no. 1, pp. 30–33. (in Russ.).

Akhmedov O.R., Shomurotov Sh.A., Rakhmanova G.G., Turaev A.S. Russ. J. of Bioorg. Chem., 2017, no. 7, pp. 718–721. DOI: 10.1134/S1068162017070020.

Akhmedov O.R., Shomurotov Sh.A., Turaev A.S., Vaili A. Chemistry for Sustainable Development, 2017, vol. 25, pp. 139–143.

Syutkin V.N., Nikolayev A.G., Sazhin S.A., Popov V.M., Zamoryanskiy A.A. Khimiya rastitel'nogo syr'ya, 2000, no. 1, pp. 5–25. (in Russ.).

Medusheva Ye.O., Filatov V.N., Ryl'tsev V.V., Belov A.A., Kulagina A.S. i dr. Farmatsiya, 2016, no. 1, pp. 52–56. (in Russ.).

Gumnikova V.I. Sintez dial'degiddekstrana i dial'degidkarboksimetiltsellyulozy i ikh khimicheskiye pre-vrashcheniya: diss. … kand. khim. nauk. [Synthesis of dialdehyde dextran and dialdehyde carboxymethyl cellulose and their chemical transformations: diss. ... Cand. chem. sciences]. Moscow, 2014, 137 p. (in Russ.).

Guben-Veyl'. Metody organicheskoy khimii. [Organic chemistry methods]. Moscow, 1967, vol. 2, 1032 p. (in Russ.).

Rawlinson L.B., Ryan S.M., Mantovani G., Syrett J.A, Haddleton D.M., Brayden D.J. Biomacromolecules, 2010, vol. 11(2), pp. 443–453. DOI: 10.1021/bm901166y.

Tishchenko E.V., Iozep A.A., Ivin B.A. Russ. J. of Appl. Chem., 2002, vol. 75, no. 4, pp. 680–682.

Snezhko V.A., Komar V.P., Khomyakov K.P., Virnik A.D., Zhbankov R.G., Rozenberg G.Ya., Rogovin Z.A. Vysokomolekulyarnyye soyedineniya, 1974, vol. 16, no. 10, pp. 2233–2239. (in Russ.).

Sarymsakov A.A., Nadzhimutdinov Sh., Tashpulatov Yu.T. Khimiya prirodnykh soyedineniy, 1998, no. 2, pp. 212–217. (in Russ.).

Shomuratov Sh.A., Murodov E.A., Turayev A.S. Khimiya rastitel'nogo syr'ya, 2006, no. 2, pp. 25–28. (in Russ.).

Keshk S.M.A.S., Ramadan A.M., Bondock S. Carbohydrate Polymers, 2015, vol. 127, pp. 246–251. DOI: 10.1016/j.carbpol.2015.03.038.

Wang P., He H., Cai R., Tao G., Yang M., Zuo H., Wang Y. Carbohydrate Polymers, 2019, vol. 212, pp. 403–411. DOI: 10.1016/j.carbpol.2019.02.069.

Tishchenko Ye.V. Vzaimodeystviye amino- i gidroksi(okso)proizvodnykh geterotsiklov s polisakharidami – novyy put' sinteza BAV: avtoref. dis. … kand. khim. nauk. [The interaction of amino and hydroxy (oxo) derivatives of heterocycles with polysaccharides - a new way of synthesis of biologically active substances: author. dis. ... Cand. chem. sciences]. St.-Petersburg, 2003, 26 p. (in Russ.).

Kozlova Yu.S., Rogovin Z.A. Vysokomolekulyarnyye soyedineniya, 1960, vol. 2, no. 4, pp. 614–618. (in Russ.).

Shatalov D.O. Razrabotka i standartizatsiya metodov kontrolya kachestva, razvetvlennogo oligogeksametilenguanidin gidrokhlorida: diss. … kand. farm. nauk. [Development and standardization of quality control methods for branched oligohexamethylene guanidine hydrochloride: diss. ... Cand. farm. sciences]. Moscow, 2015, 137 p. (in Russ.).

Afinogenov G.Ye., Panarin Ye.F. Antimikrobnyye polimery. [Antimicrobial polymers]. St.-Petersburg, 1993, 264 p. (in Russ.).

Published
2021-09-27
How to Cite
1. Akhmedov O. R., Shomurotov S. A., Turaev A. S. PECULIARITIES OF SYNTHESIS AND ANTIMICROBIAL PROPERTIES OF GUANIDINE-CONTAINING CAR-BOXYMETHYLCELLULOSE DERIVATIVES // chemistry of plant raw material, 2021. № 3. P. 73-82. URL: http://journal.asu.ru/cw/article/view/8705.
Section
Biopolymers of plants