INFLUENCE OF HYDROLYTIC TREATMENT ON THE CONTENT OF REDUCING SUBSTANCES IN NEUTRAL-SULPHITE ALKALI

UDC 663.15

  • Leysan Azatovna Mingazova Kazan National Research Technological University Email: zleisan1@mail.ru
  • Yelena Vyacheslavovna Kryakunova Kazan National Research Technological University Email: oscillatoria@rambler.ru
  • Zosia Albertovna Kanarskaya Kazan National Research Technological University Email: zosya_kanarskaya@mail.ru
  • Альберт Владимирович Kanarskiy Kazan National Research Technological University Email: alb46@mail.ru
  • Igor' Vadimovich Kruchina-Bogdanov LLC "AMT" Email: igogo011@gmail.com
  • Yekaterina Vasil'yevna Belkina LLC "Prikamskiy karton" Email: ekaterina.belkina@pcbk.ru
Keywords: birch, neutral sulfite lye, carbohydrates, acidic, enzymatic hydrolysis, reducing substances

Abstract

The aim of this work is to develop a technology for the preparation of neutral-sulfite liquors formed during the production of fibrous semi-finished products - cellulose from birch wood - for subsequent use as a nutrient medium for the cultivation of microorganisms. Acid hydrolysis was carried out at a temperature of 100 °С at a ratio of a 10% sulfuric acid solution to a liquor sample of 1 : 1. Enzymatic hydrolysis of neutral sulfite liquors was carried out with the enzyme preparations Accellerase XY and Accellerase XC at 50±2 °C and 60±2 °C. The end of hydrolysis was determined by the cessation of the increase in the content of reducing substances (RS) in the hydrolyzate. The original neutral sulphite lye contained 9.4% dry matter, 21.7 g/l of reducing substances, pH 5.3±0.2. It has been shown that as a result of enzymatic hydrolysis, the content of insoluble dry residue in the hydrolyzate decreases to 8.32% and 8.41%, respectively, and during acid hydrolysis – to 7.8%. The content of RS in neutral sulfite lye after acid hydrolysis increases by an average of 3 times, while after enzymatic hydrolysis - a maximum of 2 times.

It was found by gas-liquid chromatography that pentoses predominate in the obtained hydrolysates. Microbiological processing of media with a similar carbohydrate composition is possible by a number of strains of microorganisms capable of assimilating pentoses, for example, yeast-like fungi of the Saccharomycetaceae family and bacteria of the Enterobacteriaceae family.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Leysan Azatovna Mingazova, Kazan National Research Technological University

аспирант кафедры пищевой инженерии малых предприятий

Yelena Vyacheslavovna Kryakunova, Kazan National Research Technological University

доцент кафедры пищевой инженерии малых предприятий, кандидат биологических наук

Zosia Albertovna Kanarskaya, Kazan National Research Technological University

доцент кафедры пищевой биотехнологии, кандидат технических наук

Альберт Владимирович Kanarskiy, Kazan National Research Technological University

профессор кафедры пищевой биотехнологии, доктор технических наук

Igor' Vadimovich Kruchina-Bogdanov, LLC "AMT"

генеральный директор, кандидат химических наук

Yekaterina Vasil'yevna Belkina, LLC "Prikamskiy karton"

инженер, заведующий исследовательской лабораторией

References

Akim E.L. Khimicheskiye volokna, 2016, no. 3, pp. 4–13. (in Russ.).

Area M.C., Felissia F.E., Nunez C.E., Venica A., Valade J.L. Cellul. Chem. Technol., 2000, vol. 34, pp. 173–182.

Area M.C., Felissia F.E., Nunez C.E., Venica A., Valade J.L. Cellul. Chem. Technol., 2000, vol. 34, pp. 525–535.

Saeed A., Jahan M.S., Li H.M., Liu Z.H., Ni Y.H., van Heiningen A. Biomass Bioenergy, 2012, vol. 39, pp. 14–19. DOI: 10.1016/j.biombioe.2010.08.039.

Plaza G.A., Wandzich D. Management Systems in Production Engineering, 2016, no. 3, pp. 150–155. DOI: 10.2478/mspe-02-03-2016.

Carvalheiro F., Duarte L.C., Gírio F.M. Journal of Scientific & Industrial Research, 2008, vol. 67, pp. 849–864.

Schaidle J.A., Moline C.J., Savage P.E. Environmental Progress & Sustainable Energy, 2011, vol. 30, no. 4, pp. 743–753. DOI: 10.1002/ep.10516.

Hamelinck C.N., van Geertje H., Faaij A. Biomass and Bioenergy, 2005, vol. 28, pp. 384–410. DOI: 10.1016/j.biombioe.2004.09.002.

Wellisch M., Jungmeier G., Karbowski A., Patel M.K., Rogulska M. Biofuels, Bioprod, Biorefining, 2010, vol. 4, pp. 275–286. DOI: 10.1002/bbb.217.

Bozell J.J. CLEAN – Soil, Air, Water, 2008, vol. 36, pp. 641–647. DOI: 10.1002/clen.200800100.

Schieb P.-A., Philp J.C. Trends Biotechnol., 2014, vol. 32, pp. 496–500. DOI: 10.1016/j.tibtech.2014.08.006.

Stuart P. PulpPapCanada, 2006, vol. 107, pp. 13–16.

Bogolitsyn K.G., Reznikov V.M. Khimiya sul'fitnykh metodov delignifikatsii drevesiny. [Chemistry of sulfite methods of wood delignification]. Moscow, 1994, 288 p. (in Russ.).

Deshpande R., Sundvall L., Grundberg H., Germgard U. BioRes., 2016, vol. 11, pp. 5961–5973. DOI: 10.15376/biores.11.3.5961-5973.

Christoph L.P. Integrated Forest Biorefineries: Challenges and Opportunities. Cambridge, 2013, 313 p.

Cherubini F., Jungmeler G., Wellisch M., Willke T., Skiadas I., Van Ree R., de Jong E. Biofuels, Bioprod. Bioref., 2009, vol. 3, pp. 534–546. DOI: 10.1002/bbb.172.

Demirbas A. Biorefineries: For Biomass Upgrading Facilities. London, 2010, pp. 75–92.

Hamalainen S., Nayha A., Pesonen H.-L. J. Cleaner Prod., 2011, vol. 19, pp. 1884–1891. DOI: 10.1016/j.jclepro.2011.01.011.

GOST 2184-2013. Kislota sernaya tekhnicheskaya. [GOST 2184-2013. Technical sulfuric acid]. Moscow, 2014, 37 p. (in Russ.).

Morozova Yu.A., Skvortsov Ye.V., Alimova F.K., Kanarskiy A.V. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2012, no. 19, pp. 120–122. (in Russ.).

Aleksandrova E.A., Gaydukova N.G. Analiticheskaya khimiya v 2 knigakh. Kniga 1. Khimicheskiye metody analiza. [Analytical chemistry in 2 books. Book 1. Chemical methods of analysis]. Moscow, 2018, 551 p. (in Russ.).

Mukhutdinov R.R., Pilipenko T.V., Kruchina-Bogdanov I.V. Vestnik YuUrGU. Seriya «Pishchevyye i biotekhnologii», 2019, no. 4, pp. 75–84. DOI: 10.14529/food190408. (in Russ.).

Chulkin A.M., Loginov D.S., Vavilova Ye.A., Abyanova A.R., Zorov I.N., Kurzeyev S.A., Koroleva O.V., Benevo-lenskiy S.V. Biokhimiya, 2009, no. 6, pp. 805–813. (in Russ.).

GOST R 55302-2012. Fermentnyye preparaty dlya pishchevoy promyshlennosti. Metod opredeleniya ksilanaznoy ak-tivnosti. [GOST R 55302-2012. Enzyme preparations for the food industry. Method for determination of xylanase ac-tivity]. Moscow, 2013, 12 p. (in Russ.).

Bolotnikova O.I., Mikhaylova N.P., Bazarnova Yu.G., Aronova Ye.B., Bolotnikova T.A., Akinina Yu.N. Izvestiya Vuzov. Prikladnaya khimiya i biotekhnologiya, 2019, no. 4, pp. 679–693. DOI: 10.21285/2227-2925-2019-9-4-679-693. (in Russ.).

Published
2021-09-27
How to Cite
1. Mingazova L. A., Kryakunova Y. V., Kanarskaya Z. A., KanarskiyА. В., Kruchina-Bogdanov I. V., Belkina Y. V. INFLUENCE OF HYDROLYTIC TREATMENT ON THE CONTENT OF REDUCING SUBSTANCES IN NEUTRAL-SULPHITE ALKALI // chemistry of plant raw material, 2021. № 3. P. 309-317. URL: http://journal.asu.ru/cw/article/view/9160.
Section
Biotechnology