RESISTANCE OF TANGENTIAL SWIRLERS WITH ANNULAR CHANNELS

UDC 66.015.23

  • Nikolaj Aleksandrovich Voinov Reshetnev Siberian State University of Science and Technology Email: n.a.voynov@mail.ru
  • Anastasiya Viktorovna Bogatkova Reshetnev Siberian State University of Science and Technology Email: Sonchic-Sveta@yandex.ru
  • Nina Vladimirovna Deryagina Reshetnev Siberian State University of Science and Technology Email: gavgolenko@mail.ru
  • Denis Andreevich Zemtsov Reshetnev Siberian State University of Science and Technology Email: denis_zemtsov.92@mail.ru
  • Nataliya Yul`evna Kozhukhova Reshetnev Siberian State University of Science and Technology Email: sitkova72@mail.ru
Keywords: swirler, hydraulic resistance, simulation, velocity and pressure profile, numerical simulation

Abstract

A review of vortex apparatuses and processes in which a rotating gas-liquid flow is used as an intensification of heat and mass transfer is presented.

It is shown that tangential swirlers, which are easy to manufacture and compact, have found the greatest application in industrial practice for creating gas (steam) rotation.

It is experimentally established that tangential swirlers with annular walls of channels intended for gas passage have the lowest hydraulic resistance.

The data on the hydraulic resistance of tangential swirlers with annular channels, velocity and pressure obtained experimentally and by calculation in a wide range of variation of the design parameters of the device are presented.

The dependences between the hydraulic resistance of the swirler and its design parameters are revealed.

Numerical simulation of the parameters of the gas flow in the channels is carried out. Diagrams of the pressure and velocity distribution are presented and analyzed, and experimental data on the influence of the design parameters of the swirler channel, such as width and length, on its hydraulic resistance are confirmed.

An empirical dependence for determining the hydraulic resistance coefficient of a tangential swirler with annular channels is presented for engineering calculations.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Nikolaj Aleksandrovich Voinov, Reshetnev Siberian State University of Science and Technology

доктор технических наук, профессор

Anastasiya Viktorovna Bogatkova, Reshetnev Siberian State University of Science and Technology

аспирант

Nina Vladimirovna Deryagina, Reshetnev Siberian State University of Science and Technology

старший преподаватель

Denis Andreevich Zemtsov , Reshetnev Siberian State University of Science and Technology

кандидат технических наук

Nataliya Yul`evna Kozhukhova, Reshetnev Siberian State University of Science and Technology

кандидат технических наук, доцент

References

Wang Z., Yang T., Liu Z., Wang S., Gao Y., Wu M. Chemical Engineering and Processing – Process Intensification, 2019, vol. 139, pр. 78–94. DOI: 10.1016/j.cep.2019.03.020.

Chen Y.S., Lin C.C., Liu H.S. Industrial & Engineering Chemistry Research, 2005, vol. 44 (20), pр. 7868–7875. DOI: 10.1021/ie048962s.

Sun B., Zou H., Chu G., Shao L., Zeng Z., Chen J. Industrial & Engineering Chemistry Research, 2012, vol. 51 (33), pp. 10949–10954. DOI: 10.1021/ie202983x.

Qian Z., Xu L., Cao H., Guo K. Industrial & Engineering Chemistry Research, 2009, vol. 48 (20), pp. 9261–9267. DOI: 10.1021/ie900894a.

Chen Q.Y., Chu G.W., Luo Y., Sang L., Zhang L.L., Zou H.K., Chen J.F. Industrial & Engineering Chemistry Re-search, 2016, vol. 55 (44), pp. 11606–11613. DOI: 10.1021/acs.iecr.5b03862.

Sun B.C., Wang X.M., Chen J.M., Chu G.W., Chen J.F., Shao L. Industrial & Engineering Chemistry Research, 2009, vol. 48 (24), pp. 11175–11180. DOI: 10.1021/ie9001316.

Qian Z., Li Z.H., Guo K. Industrial & Engineering Chemistry Research, 2012, vol. 51 (23), pp. 8108–8116. DOI: 10.1021/ie2027266.

Guo K., Wen J., Zhao Y., Wang Y., Zhang Z., Li Z., Qian Z. Environmental Science & Technology, 2014, vol. 48 (12), pp. 6844–6849. DOI: 10.1021/es404913e.

Nikolayev N.A. Effektivnost' protsessov rektifikatsii i absorbtsii v mnogostupenchatykh apparatakh s prya-motochno-vikhrevymi kontaktnymi ustroystvami. [Efficiency of rectification and absorption processes in multi-stage apparatuses with direct current-vortex contact devices]. Kazan', 2011, 116 p. (in Russ.).

Ovchinnikov A.A. Dinamika dvukhfaznykh zakruchennykh turbulentnykh techeniy v vikhrevykh separatorakh. [Dy-namics of two-phase swirling turbulent flows in vortex separators]. Kazan', 2005, 285 p. (in Russ.).

Nikolayev A.N., Ovchinnikov A.A., Nikolayev N.A. Khimicheskaya promyshlennost', 1992, no. 9, pp. 36–38. (in Russ.).

Voinov N.A., Zhukova O.P., Voinov A.N., Zemtsov D.A. Theor. Found. Chem. Eng., 2016, vol. 50, no. 5, pp. 705–710. DOI: 10.1134/S0040579516050390.

Voynov N.A., Frolov A.S., Zemtsov D.A., Zhukova O.P., Bogatkova A.V. Teoreticheskiye osnovy khimicheskoy tekhnologii, 2019, vol. 53, no. 6, pp. 622–633. DOI: 10.1134/S0040357119060149. (in Russ.).

Voynov N.A., Nikolayev A.N., Zhukova O.P., Kozhukhova N.Yu. Khimicheskaya promyshlennost', 2012, vol. 89, no. 1, pp. 48–52. (in Russ.).

Eldrainy Y.А., Ahmad M.F., Jaafar M.N.M. Modern Applied Science, 2009, vol. 3, no. 5, pр. 21–30.

Sandilya Р., Rao D.P., Sharma A., Biswas G. Industrial & Engineering Chemistry Research, 2001, vol. 40 (1), pр. 384–392. DOI: 10.1021/ie0000818.

Dmitrieva O.S., Dmitriev A.V., Nikolaev A.N. Chemical and Petroleum Engineering, 2014, vol. 50, pp. 169–175. DOI: 10.1007/s10556-014-9874-1.

Deryagina N.V., Voinov N.A., Zemtsov D.A., Bogatkova A.V. Thermal Science and Engineering Progress, 2020, vol. 18, 100524. DOI: 10.1016/j.tsep.2020.100524.

Voynov N.A., Zemtsov D.A., Zhukova O.P., Bogatkova A.V. Khimicheskoye i neftegazovoye mashinostroyeniye, 2019, no. 1, pp. 31–33. (in Russ.).

Shliting G. Teoriya pogranichnogo sloya. [Theory of the boundary layer]. Moscow, 1974, 711 p. (in Russ.).

Kh'yuitt Dzh., Kholl-Teylor N. Kol'tsevyye dvukhfaznyye techeniya. [Annular two-phase currents]. Moscow, 1974, 408 p. (in Russ.).

Laptev A.G. Modeli pogranichnogo sloya i raschet teplomassoobmennykh protsessov. [Boundary layer models and calculation of heat and mass transfer processes]. Kazan, 2007, 500 p. (in Russ.).

Published
2022-03-10
How to Cite
1. Voinov N. A., Bogatkova A. V., Deryagina N. V., Zemtsov D. A., Kozhukhova N. Y. RESISTANCE OF TANGENTIAL SWIRLERS WITH ANNULAR CHANNELS // chemistry of plant raw material, 2022. № 1. P. 335-342. URL: http://journal.asu.ru/cw/article/view/9670.
Section
Technology