THE OXIDATIVE TREATMENT INFLUENCE ON THE PROPERTIES OF CARBON MATERIALS OBTAINED FROM MICROCRYSTAL CELLULOSE

  • Надежда Михайловна Микова Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk Email: nm@icct.ru
  • Иван Петрович Иванов Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk Email: ivanov@icct.ru
  • Николай Васильевич Чесноков Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk; Krasnoyarsk Scientific Centre SB RAS, Akademgorodok, 50, Krasnoyarsk, 660036 Email: cnv@icct.ru
  • Валерий Федорович Каргин Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk Email: kargin@icct.ru
Keywords: microcrystal cellulose, carbonization, oxidative modification, surface groups, adsorption and catalytic properties

Abstract

The surface modification of carbonized at 450 °C microcrystal cellulose (MCC-450) by the oxidative agents solutions of different strength: 30% H2O2, 3N H2SO4, oleum and chlorosulfonic acid HSO3Cl results in preparation of carbon materials (CM) with different degrees of surface oxidation. The obtained CM were characterized using FTIR, BET, elemental and X-ray spectral analyses. The obtained results showed that more carboxylic and hydroxyl surface oxygen groups were introduced into CM composition as a result of oleum and HSO3Cl oxidation process than by the oxidative solutions of Н2О2 и 3N H2SO4. Significant quality of surface oxygen in the MCC/oleum and MCC/HSO3Cl samples is part of НSO3- groups, where the S content was 2,3–2,5% at. It has been found that oxidized sample MCC/oleum reveals activity in test reactions of cellulose catalytic hydrolysis and esterification of acetic acid with ethanol.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Надежда Михайловна Микова, Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk
старший научный сотрудник, кандидат химических наук, тел.: (391) 249-53-87
Иван Петрович Иванов, Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk
старший научный сотрудник, кандидат технических наук, тел.: (391) 249-48-94
Николай Васильевич Чесноков, Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk; Krasnoyarsk Scientific Centre SB RAS, Akademgorodok, 50, Krasnoyarsk, 660036
заместитель директора Института химии и химической технологии СО РАН, заместитель председателя Красноярского научного центра СО РАН, доктор химических наук, тел.: (391) 249-53-99
Валерий Федорович Каргин, Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk
старший научный сотрудник, кандидат химических наук, тел.: (391) 249-55-87

References

Langley L., Villanueva D., Fairbrother D. Quantification of surface oxides on carbonaceous materials // Chem. Mat. 2006. Vol. 18. N1. Pp. 169–178.

Moreno-Castilla C., Lopez-Ramon M.V., Carrasco-Marin F. Changes in surface chemistry of activated carbon by wet oxidation // Carbon. 2000. Vol. 38. N14. Pp. 1995–2001.

Vinke P., Eijk van der M., Verbree M., Voskamp A.F., Bekkum van H. Modification of the surfaces of gas-active carbon and a chemically active carbon with nitric acid, hypochlorite, and ammonia // Carbon. 1994. Vol. 32. N4. Pp. 675–686.

Corapcioglu M.O., Huang C.P. The surface acidity and characterization of some commercial active carbons // Carbon. 1987. Vol. 25, N4. Pp. 569–578.

Okamura M., Takagaki A., Toda M., Kondo J.N., Domen K., Tatsumi T., Hara M. Acide-catalyzed reactions on flexi-ble polycyclic aromatic carbon in amorphous carbon // Chem. Mater. 2006. Vol. 18. N13. Pp. 3039–3045.

Stijn Van de Vyver, Li Peng, Jan Geboers at al. Sulfonated silica/carbon nanocomposites as novel catalysts for hy-drolysis of cellulose to glucose // Green Chem. 2010. Vol. 12. Pp. 1560–1563.

Onda A., Ochi T., Yanagisawa K. Selective hydrolysis of cellulose into glucose over solid acid catalysts // Green Chem. 2008. Vol. 10, N10. Pp. 1033–1037.

Chen J.P., Wu S., Chongs K. Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption // Carbon. 2003. Vol. 41. Pp. 1979–1986.

Mugisidi D., Ranaldo A., Soedarsono J.W., Hikam M. Modification of activated carbon using sodium acetate and its regeneration using sodium hydroxide for the adsorption of copper from aqeous solution // Carbon. 2007. Vol. 45. Pp. 1081–1084.

Santiago M., Stuber F., Fabregat A., Font J. Modified activated carbons for catalytic wet air oxidation of phenol // Carbon. 2005. Vol. 43. N10. Pp. 2334–2345.

Chen J.P., Wu S.N. Acid/base-treated activated carbons: characterization of functional groups and metal adsorptive properties // Langmuir. 2004. Vol. 20. N6. Pp. 2233–2242.

Park S.J., Kim K.D. Influence of activation temperature on adsorption characteristics of activated fiber composites // Carbon. 2001. Vol. 39. N11. Pp. 1741–1746.

Beck N.V., Meech S.E., Norman P.R., Pears L.A. Characterization of surface oxides on carbon and their influence on dynamic adsorption // Carbon. 2002. Vol. 40. Pp. 531–540.

Микова Н.М., Чесноков Н.В., Иванов И.П., Михлин Ю.Л., Кузнецов Б.Н. Изучение свойств углеродных мате-риалов, модифицированных кислотами // Техническая химия от теории к практике : сб. труд. III Междун. конф. Пермь, 2012. С. 245–249.

Abdel-Nasser A,. El-Hendawy. Variation in the FTIR spectra of biomass under impregnation, carbonization and oxi-dation conditions // J. Anal. Appl. Pyrolysis. 2006. Vol. 75. Pp. 159–166.

Berenguer R., Marco-Lozar J.P., Quijada C., Cazorla-Amoros D., Morallon E. A comparision between oxidation of activated carbon by electrochemical and chemical treatments // Carbon. 2012. Vol. 50. Pp. 1123–1134.

Langley L.A., Fairbrother D.H. Effect of wet chemical treatments on the distribution of surface oxides on carbona-ceous materials // Carbon. 2007. Vol. 45. Pp. 47–54.

Pradhan K.B., Sandle K.N. Effect of different agent treatments on the surface properties of activated carbons // Car-bon. 1999. Vol. 37. Pp. 1323–1332.

Adams L.B., Hall C.R., Holmes R.J., Newton R.A. An examination of how exposure to humid air can result in changes in the adsorption properties of activated carbon // Carbon. 1998. Vol. 26, N4. Pp. 451–459.

Mazov I., Kuznetsov V.L., Simonova I.A., Stadnichenko A.I., Ishchenko A.V., A.V., Romanenko A.I., Tkachev E.N., Anikeeva O.B. Oxidation behavior of multiwall carbon nanotubes with different diameters and mor-phology // Applied Surface Science. 2012. Vol. 258. Pp. 6272–6280.

Chingombe P., Saha B., Wakeman R.J. Surface modification and characterization of coal-based activated carbon // Carbon. 2005. Vol. 43. Pp. 3132–3143.

Groszek A. Graphitic and polar surface sites in carbonaceous solids // Carbon. 1987. Vol. 25. N6. Pp. 717–722.

Strelko Jr.V., Malik D.J., Streat M. Characterization of the surface of oxidized carbon adsorbents // Carbon. 2002. Vol. 40. Pp. 95–104.

Грег С., Синг Л. Адсорбция, удельная поверхность, пористость. М., 1984. 306 c.

Pastor-Villegas J., Meneses Rodriguez J.M., Pastor-Valle J.F., Garcia Garcia M. Changes in commercial wood char-coals by thermal treatments // J. Anal. Appl. Pyrolysis. 2007. Vol. 80. Pp. 507–514.

Rodriguez-Mirasol J., Bedia J., Cordero T. Influence of water vapor on the adsorption of VOGs on lignin-based acti-vated carbons // Separation Science and Technology. 2005. Vol. 40. Pp. 3113–3135.

Hara M., Yoshida T., Takagaki A., Takata T., Kondo J.N., Hayashi Sh., Domen K. A carbon material as a strong pro-tonic acide // Angew. Chem. Int. Ed. 2004. Vol. 43. Pp. 2955–2958.

Suganuma S., Nakajima K., Kitano M., Amaguchi D.Y., Kato H., Hayashi Sh., Hara M. Hydrolysis of Cellulose by Amorphous Carbon Bearing SO3H, COOH, and OH Groups // Am. Chem. Soc. 2008. Vol. 130, N38. Pp. 12787–12793.

Published
2014-06-10
How to Cite
1. Микова Н. М., Иванов И. П., Чесноков Н. В., Каргин В. Ф. THE OXIDATIVE TREATMENT INFLUENCE ON THE PROPERTIES OF CARBON MATERIALS OBTAINED FROM MICROCRYSTAL CELLULOSE // chemistry of plant raw material, 2014. № 2. P. 51-59. URL: http://journal.asu.ru/cw/article/view/jcprm.1402051.
Section
Biopolymers of plants