FATTY ACIDS COMPOSITION OF LIPIDS IN THE CALLUSES OF TWO LARIX SPECIES (LARIX GMELINII AND LARIX SIBIRICA)

  • Сергей Петрович Макаренко Sibirian institute of physiology and biochemistry of plants, of the Siberian branch of the Academy of Sciences, Lermon-tova st., 132, Irkutsk, 664033 Email: makar@sifibr.irk.ru
  • Владимир Николаевич Шмаков Sibirian institute of physiology and biochemistry of plants, of the Siberian branch of the Academy of Sciences, Lermon-tova st., 132, Irkutsk, 664033 Email: makar@sifibr.irk.ru
  • Татьяна Александровна Коненкина Sibirian institute of physiology and biochemistry of plants, of the Siberian branch of the Academy of Sciences, Lermon-tova st., 132, Irkutsk, 664033 Email: makar@sifibr.irk.ru
  • Любовь Виссарионовна Дударева Sibirian institute of physiology and biochemistry of plants, of the Siberian branch of the Academy of Sciences, Lermon-tova st., 132, Irkutsk, 664033 Email: makar@sifibr.irk.ru
  • Юрий Михайлович Константинов Sibirian institute of physiology and biochemistry of plants, of the Siberian branch of the Academy of Sciences, Lermon-tova st., 132, Irkutsk, 664033 Email: makar@sifibr.irk.ru
Keywords: Larix gmelinii, Larix sibirica, каллусы, fatty acid desaturase gene, Δ5-polimetilenrazdelennye acid

Abstract

The fatty acid (FA) composition of callus lipids in two larix species (Larix gmelinii and Larix sibrica) was studied by gas-liquid chromatography. Callus lipids were characterized by a high content of unsaturated FAs: 57,7% in L. gmelinii and 59,9% L. sibirica. Among them, oleic and linoleic acids predominated (11,2 and 24,5% of total FAs in L. gmelinii and 14,8 and 26,6% in L. sibirica, respectively). Callus lipids also contained Δ5-UPIFA (unsaturated polymethylene-interrupted FAs (12,3% in L. gmelinii and 11,2% in L. sibirica, respectively), where pinoleic and sciadonic acids predominated. Callus lipids also contained high content of VLCPUFA (С20, C22, C23, C24) 11,4% in callus L. gmelinii and 9,1% L. sibirica.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Сергей Петрович Макаренко, Sibirian institute of physiology and biochemistry of plants, of the Siberian branch of the Academy of Sciences, Lermon-tova st., 132, Irkutsk, 664033
старший научный сотрудник, кандидат биологических наук, тел.: (3952) 42-58-92
Владимир Николаевич Шмаков, Sibirian institute of physiology and biochemistry of plants, of the Siberian branch of the Academy of Sciences, Lermon-tova st., 132, Irkutsk, 664033
старший научный сотрудник, кандидат биологических наук
Татьяна Александровна Коненкина, Sibirian institute of physiology and biochemistry of plants, of the Siberian branch of the Academy of Sciences, Lermon-tova st., 132, Irkutsk, 664033
ведущий технолог
Любовь Виссарионовна Дударева, Sibirian institute of physiology and biochemistry of plants, of the Siberian branch of the Academy of Sciences, Lermon-tova st., 132, Irkutsk, 664033
заведующая лабораторией фи зико-химических методов исследований, кандидат биологических наук
Юрий Михайлович Константинов, Sibirian institute of physiology and biochemistry of plants, of the Siberian branch of the Academy of Sciences, Lermon-tova st., 132, Irkutsk, 664033
заведующий лабораторией генетической инженерии растений, доктор биоргических наук, профессор

References

Ohlorogg J., Browse J. Lipid Biosynthesis // Plant Cell. 1995. Vol. 7. Pp. 957–970.

Wang Z., Benning C. Chloroplast lipids synthesis and lipid trafficking through ER-plastid membrane contact sites // Bioсhem. Soc. Trans. 2012. Vol. 40. Pp. 457–463.

Schultz D.J., Suh M.C., Ohlrogge J. Stearoyl-acyl carrier protein and unusual acyl-acyl carrier protein desaturase ac-tivities are differentially influenced by ferrodoxin // Plant Physiol. 2000. Vol. 124. Pp. 681–692.

Kang J., Snapp A.R., Lu C. Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa // Plant Physiology and Biochemistry. 2011. Vol. 49. Pp. 223–229.

Theocharis A., Clement C., Barka E.A. Physiological and molecular changes in plants grow at low temperatures // Planta. 2012. Vol. 235. Pp. 1091–1105.

Roman A., Andreu V., Hernandez M.L., Lagunas B., Picorel R., Martinez-Rivas J.M., Alfonso M. Contribution of the dif-ferent omega-3 fatty acid desaturase genes to the cold response in soybean // J. Exp. Bot. 2012. Vol. 63. Pp. 4973–4982.

Sayanova O., Ruiz-Lopez N., Haslam R. P., Napier J.A.Role of Δ6-desaturase acyl-carrier specificity in the efficient synthesis of long-chain polyunsaturated fatty acids in transgenic plants // Plant Biotechnology J. 2012. Vol. 10. Pp. 195–206.

Астахова Н.В., Дёмин И.Н., Нарайкина Н.В., Трунова Т.И. Влияние гена desA delta12-ацил-липидной десату-разы на структуру хлоропластов и устойчивость к гипотермии растений картофеля // Физиология растений. 2011. Т. 58. С. 21–27.

Cao S., Zhou X.R., Wood C.C., Green A.G., Singh S.P., Liu L, Liu Q. A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.) // BMC Plant Biol. 2013. Vol. 13. Pp. 1–18.

Napier J.A., Michaelson L.V., Dunn T.M. A new class of lipid desaturase central to sphingolipid biosynthesis and signaling // Trend Plant Sci. 2002. Vol. 7. Pp. 475–478.

Wolff R.L., Lavialle O., Pedrono F., Pasquier E., Destaillats F., Marpeau A., Angers P., Aitzetmuller K. Abietoid seed fatty acid compositions - a review of the genera Abies, Cedrus, Hesperopeuce, Keteleeria, Pseudolarix, Tsuga and preliminary inferences on the taxonomy of Pinaceae // Lipids. 2002. Vol. 37. Pp. 17–26.

Meesapyodsuk D., Qiu X. The front-end desaturase: structure, function, evolution and biotechnological use // Lipids. 2012. Vol. 47(3). Pp. 227–237.

Williams M., Sanchez J., Hann A.C., Harwood J.L. Lipid Biosynthesis in Olive Cultures Lipid Biosynthesis // J. Exp. Bot. 1993. Vol. 44. Pp. 1717–1723.

Salas J., Canchez J., Ramli U.S., Manal A.M., Williams M., Harwood J .L. Biochemistry of Lipid Metabolism in olive and other oil fruits // Prog. Lipid Res. 2000. Vol. 39. Pp. 151–180.

Hernandez M.L., Guschina I.A., Martinez-Rivas J.V., Mancha M., Harwood J.L. The utilization and desaturation of oleate and linoleate during glycerolipid biosynthesis in olive (Olea europaea L.) callus culture // J. Exp. Bot. 2008. Vol. 59. Pp. 2425–2435.

Ramli U.S., Salas J.J., Quant P.A., Harwood J.L. Use of metabolic control analysis to give guantitative information on control of lipid biosynthesis in the important oil crop, Elaeis guineesis (oilpalm) // New Phytologist. 2009. Vol. 184. Pp. 330–339.

Тимофеева О.А., Румянцева Н.И. Культура клеток и тканей растений. Казань, 2012. С. 1–91.

Третьякова Н.И., Ижболдина М.В. Индукция соматического эмбриона у кедра сибирского// Лесоведение. 2009. №5. С. 43–49.

Саляев Р.К., Рекославская Н.И. Получение каллусной культуры клеток кедра сибирского // Лесоведение. 2009. №5. 57–62.

Макаренко С.П., Константинов Ю.М., Шмаков В.Н., Хотимченко С.В. Коненкина Т.А. Жирнокислотный со-став липидов лиственницы Гмелина (Larix gmelinii (Rupr). Rupr.) // Биологически мембраны. 2005. Т. 52. С. 343–348.

Макаренко C.П., Константинов Ю.М., Шмаков В.Н., Коненкина Т.А. Жирнокислотный состав липидов каллу-сов двух видов сосны Pinus sibirica и Pinus slvestris // Физиология растений. 2010. Т. 57. С. 790–794.

Murashige T., Scoog F. A Revised medium for rapid growth and bioassays with tabacco tissue cultures // Plant Physiol. 1962. Vol. 15. Pp. 473–497.

Bligh E.C., Dyer W.J. A Rapid method of total lipid extraction and purification // Can. J. Biochem. Physiol. 1959. Vol. 37. Pp. 911–917.

Christie W.W. Preparation of ester derivatives of fatty acids for chromatographic analysis // Advances in Lipid Meth-odology. Dundee, 1993. Pp. 69–111.

Dobson G., Сhristie W.W. Mass spectrometry of fatty acid derivatives // Eur. J. Lipid Sci. Technol. 2002. Vol. 104. Pp. 36–43.

Wolff R.L., Christie W.W. Structure, practical sources (gymnosperm seeds), gas-chromatographic data (equivalent chain lengths), and mass spectrometric characteristics of all-cis Δ5-olefinic acids // Eur. J. Lipid Sci.Technol. 2002. Vol. 104. Pp. 234–244.

Cartea M.E., Migdal M., Galle A.M., Pelletier G., Guerche P. Comparison of sense and antisense methodologies for modifying the fatty acid composition of arabidopsis oilseed // Plant Sci. 1998. Vol. 136. Pp. 181–194.

Mongrad S., Badoc A., Patouille B., Lacomblez C., Chavent M., Cassagne C., Bessoule J.J. Taxonomy of gymno-spermae: multivariate analyses of leaf fatty acid composition // Phytochemistry. 2001. Vol. 58. Pp. 101–115.

Plattner R.D., Spencer G.F., Kleiman R. cis- Δ5-Polyenoic acids in Larix leptolepis seed oil // Lipids. 1975/ Vol. 10. Pp. 413–416.

Sato M., Seki K., Kita K., Moriguchi Y., Yunoki K., Kofujita H., Ohnishi M. Prominent differences in leaf fatty acid composition in the F1 hybrid compared with parent trees Larix gmelinii var. japonica and L. kaempferi // Biosci Bio-technol Biochem. 2008. Vol. 72. Pp. 2895–2902.

Published
2014-06-10
How to Cite
1. Макаренко С. П., Шмаков В. Н., Коненкина Т. А., Дударева Л. В., Константинов Ю. М. FATTY ACIDS COMPOSITION OF LIPIDS IN THE CALLUSES OF TWO LARIX SPECIES (LARIX GMELINII AND LARIX SIBIRICA) // chemistry of plant raw material, 2014. № 2. P. 121-127. URL: http://journal.asu.ru/cw/article/view/jcprm.1402121.
Section
Low-molecular weight compounds