Конформно плоские (псевдо)римановы многообразия с метрической связностью с векторным кручением

  • В.В. Балащенко Белорусский государственный университет
  • П.Н. Клепиков Алтайский государственный университет
  • Е.Д. Родионов Алтайский государственный университет
Ключевые слова: (псевдо)римановы многообразия, метрическая связность с векторным кручением, конформные деформации

Аннотация

Широко известная теорема Вейля-Схоутена дает необходимые и достаточные условия того, что (псевдо)риманово многообразие является конформно плоским. Данная работа посвящена доказательству аналогичной теоремы в случае (псевдо)римановых многообразий с метрической связностью с векторным кручением.

Литература

1. Cartan E. Sur les vari´et´es a`connexion affine et la th´eorie de la relativit´e g´en´eralis´ee (deuxi`eme partie) // Ann. Ecole Norm. Sup. – 1925. – Vol. 42. – P. 17–88.
2. Muniraja G. Manifolds Admitting a Semi-Symmetric Metric Connection and a Generalization of Schur’s Theorem // Int. J. Contemp. Math. Sci. – 2008. – Vol. 3, no. 25. – P. 1223–1232.
3. Agricola I., Thier C. The Geodesics of Metric Connections with Vectorial Torsion // Annals of Global Analysis and Geometry. – 2004. – Vol. 26. – P. 321–332.
4. Murathan C., Ozg¨ur C. Riemannian manifolds with a semi-symmetric metric connection satisfying some semisymmetry conditions // Proceedings of the Estonian Academy of Sciences. – 2008. – Vol. 57, no. 4. – P. 210–216.
5. Yilmaz H. B., Zengin F. O., Uysal. S. A. On a Semi Symmetric Metric Connection with a Special Condition on a Riemannian Manifold // European journal of pure and applied mathematics. – 2011. – Vol. 4, no. 2. – P. 152–161.
6. Zengin F. O., Demirba˘g S. A., Uysal. S. A., Yilmaz H. B. Some vector fields on a riemannian manifold with semi-symmetric metric connection // Bulletin of the Iranian Mathematical Society. – 2012. – Vol. 38, no. 2. – P. 479–490.
7. Agricola I., Kraus M. Manifolds with vectorial torsion // Differential Geometry and its Applications. – 2016. – Vol. 46. – P. 130–146.
8. Yano K. On semi-symmetric metric connection // Revue Roumame de Math. Pure et Appliquees. – 1970. – Vol. 15. – P. 1579–1586.
9. Barua B., Ray A. Kr. Some properties of a semi-symmetric metric connection in a Riemannian manifold // Indian J. pure appl. Math. – 1985. – Vol. 16, no. 7. – P. 736–740.
10. De U.C., De B.K. Some properties of a semi-symmetric metric connection on a Riemannian manifold // Istanbul Univ. Fen. Fak. Mat. Der. – 1995. – Vol. 54. – P. 111–117.
Опубликован
2019-12-29
Как цитировать
1. Балащенко В., Клепиков П., Родионов Е. Конформно плоские (псевдо)римановы многообразия с метрической связностью с векторным кручением // Труды семинара по геометрии и математическому моделированию, 2019. № 5. С. 11-14. URL: http://journal.asu.ru/psgmm/article/view/7234.

Наиболее читаемые статьи этого автора (авторов)