Biodiversity oases in the southern tundra: the role of shrub-herbaceous communities (Western Siberia)

Как цитировать

Shefer, N. V., Kritskov, I. V., Istigechev, G. I., & Loiko, S. V. (2025). Biodiversity oases in the southern tundra: the role of shrub-herbaceous communities (Western Siberia). Acta Biologica Sibirica, 11, 1563-1587. извлечено от https://journal.asu.ru/biol/article/view/18536

Аннотация

The southwestern Gydan Peninsula remains a significant data gap in understanding tundra ecosystem responses to climate change and shrub expansion. Detailed studies linking plant community composition to soil properties in this region are critically lacking. This study provides the integrated analysis of shrub-herbaceous communities and their underlying soils in this region. Based on comprehensive geobotanical and soil surveys at 52 sites, we identified four distinct community types using multivariate analysis. Our results reveal a clear hierarchy of environmental drivers. Primary vegetation patterns and the formation of biodiversity hotspots, including the discovery of several plant species new to the local flora, are predominantly shaped by landscape heterogeneity, such as the mosaic of slopes, valleys, and snow hollows. Soil properties, notably those related to texture, active layer dynamics, and hydromorphy, act as significant secondary filters, structuring communities along a key soil gradient. However, the overall correlation between soil and vegetation matrices was limited, indicating a substantial role for other unmeasured factors. We conclude that plant community assembly in the southern Gydan tundra is governed by an interplay where the geomorphic template sets the stage for diversity, while localized soil conditions fine-tune composition. These findings establish an essential baseline for monitoring and underscore that conserving landscape heterogeneity is crucial for the resilience of these rapidly changing Arctic ecosystems.

Литература

Anisimov OA, Kokorev VA (2017) Russian permafrost in the 21st century: model-based projections and analysis of uncertainties. Earth`s Cryosphere 21(2): 3–9. [In Russian]

Atlas Tyumenskoy oblasti (1971) Issue 1. GUGK, Tyumen, 198 pp. [In Russian]

Atlas of the Yamalo-Nenets Autonomous Okrug (2004) Omsk Cartographic Factory, Salekhard, 303 pp. [In Russian]

Berner LT, Massey R, Jantz P, Forbes BC, Macias-Fauria M, Myers-Smith I, Kumpula T, Gauthier G, Andreu-Hayles L, Gaglioti BV, Burns P, Zetterberg P, D’Arrigo R, Goetz SJ (2020) Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications 11(1): 1–12. https://doi.org/10.1038/s41467-020-18479-5

Bonfils CJW, Phillips TJ, Lawrence DM, Cameron-Smith P, Riley WJ, Subin ZM (2012) On the influence of shrub height and expansion on northern high latitude climate. Environmental Research Letters 7(1): 015503. https://doi.org/10.1088/1748-9326/7/1/015503

Chen Y, Hu FS, Lara MJ (2021) Divergent shrub-cover responses driven by climate, wildfire, and permafrost interactions in Arctic tundra ecosystems: Global change biology 27(3): 652–663. https://doi.org/10.1111/gcb.15451

Ilyina IS, Lapshina EI, Lavrenko NN, Meltzer LI, Romanova EA, Bogoyavlensky BA, Makhno VD (1985) Vegetation cover of the West Siberian Plain. Nauka, Novosibirsk, 251 pp. [In Russian]

Fewster RE, Morris PJ, Ivanovic RF, Swindles GT, Peregon AM, Smith CJ (2022) Imminent loss of climate space for permafrost peatlands in Europe and Western Siberia. Nature Climate Change 12(4): 373–379. https://doi.org/10.1038/s41558-022-01296-7

Frost GV, Epstein HE, Walker DA, Matyshak G, Ermokhina K (2013) Patterned-ground facilitates shrub expansion in Low Arctic tundra. Environmental Research Letters 8(1): 015035. https://doi.org/10.1088/1748-9326/8/1/015035

Frost GV, Epstein HE, Walker DA, Matyshak G, Ermokhina K (2018) Seasonal and LongTerm Changes to Active-Layer Temperatures after Tall Shrubland Expansion and Succession in Arctic Tundra. Ecosystems 21(3): 507–520. https://doi.org/10.1007/s10021-017-0165-5

Frost GV, Bhatt US, Epstein HE, Walker DA, Raynolds MK, Berner LT, Bjerke JW, Breen AL, Forbes BC, Goetz SJ (2019) Tundra Greenness. Arctic Report Card. Phaffikon, Switzerland. https://doi.org/10.25923/8n78-wp73

Frost GV, Roland CA, Schmidt JH (2023) Dynamic disequilibrium: Recent widespread increases in vegetation cover on subarctic floodplains of Interior Alaska. Ecosphere 14: e4344. https://doi.org/10.1002/ecs2.4344

Geocryology of the USSR (1989) Western Siberia. Nedra, Moscow, 453 pp. [In Russian]

Glazunov VA, Nikolaenko SA (2018) Materials on the flora of the vicinity of the villages of Tazovsky and Gaz-Sale (Yamalo-Nenets Autonomous Okrug). In: Man and North: Anthropology, Archaeology, Ecology. Materials of All-Russian Scientific Conference, Tyumen, April 2–6. Tyumen Scientific Center SB RAS Press, Tyumen, 501–504. [In Russian]

Gureeva II (2013) Herbarium Science: Guide to Organizing a Herbarium and Working with Herbarium Collections. Study Guide. 2nd edition, corrected and supplemented. Tomsk State University Publishing House, Tomsk, 194 pp. [In Russian]

Heijmans MMPD, Magnusson RI, Lara MJ, Frost GV, Myers-Smith IH, van Huissteden J, Jorgenson MT, Fedorov AN, Epstein HE, Lawrence DM, Limpens J (2022) Tundra vegetation change and impacts on permafrost. Nature Reviews Earth and Environment 3(1): 68–84. https://doi.org/10.1038/s43017-021-00233-0

Huang M, Piao S, Janssens IA, Zhu Z, Wang T, Wu D, Ciais P, Myneni RB, Peaucelle M, Peng S (2017) Velocity of change in vegetation productivity over northern high latitudes. Nature ecology and evolution 1(11): 1649–1654. https://doi.org/10.1038/s41559-017-0328-y

Kaverin D, Malkova G, Zamolodchikov D, Shiklomanov N, Pastukhov A, Novakovskiy A, Sadurtdinov M, Skvortsov A, Tsarev A, Pochikalov A, Malitsky S, Kraev G (2021) Longterm active layer monitoring at CALM sites in the Russian European North. Polar Geography 44(3): 203–216. https://doi.org/10.1080/1088937X.2021.1981476

Khitun OV, Rebristaya OV (1998) Vegetation and ecotopical structure of the flora of cape Khonorasale surroundings (Gydansky peninsula, the arctic tundra subzone). Botanicheskii Zhurnal 83 (12): 21–37. [In Russian]

Khitun OV (2002) Intralandscape structure of the flora of the Tinikyakha river lower reaches (northern hypoarctic tundra, Gydansy peninsula). Botanicheskii Zhurnal 87 (8): 1–24. [In Russian]

Khitun OV (2003) Analysis of the intralandscape structure of the flora of the Khalmeryakha river middle reaches (West Sberian Arctic). Botanicheskii Zhurnal 88 (10): 9–30. [In Russian]

Konstantinov A, Loiko S, Kurasova A, Konstantinova E, Novoselov A, Istigechev G, Kulizhskiy S (2019) First findings of buried late-glacial paleosols within the dune fields of the Tomsk Priobye region (SE western Siberia, Russia). Geosciences 9(2): 82. https://doi.org/10.3390/geosciences9020082

Kropp H, Loranty MM, Natali SM, Kholodov AL, Rocha AV, Myers-Smith I, Abbot BW, Abermann J, Blanc-Betes E, Blok D (2020) Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. Environmental research letters 16(1): 015001. https://doi.org/10.1088/1748-9326/abc994

Lara MJ, Nitze I, Grosse G, Martin P, McGuire AD (2018) Reduced Arctic tundra productivity linked with landform and climate change interactions. Scientific reports 8(1): 1–10. https://doi.org/10.1038/s41598-018-20692-8

Liljedahl AK, Timling I, Frost GV, Daanen RP 2020 Arctic riparian shrub expansion indicates a shift from streams gaining water to those that lose flow. Communications Earth and Environment 1(1): 1–9. https://doi.org/10.1038/s43247-020-00050-1

Liu Y, Riley WJ, Keenan TF, Mekonnen ZA, Holm JA, Zhu Q, Torn MS (2022) Dispersal and fire limit Arctic shrub expansion. Nature communications 13(1): 1–10. https://doi.org/10.1038/s41467-022-31597-6

Loiko SV, Gerasko LI, Kulizhskiy SP (2011) Grouping of Soil Memory Carriers (Case Study of the Northern Part of the Chernevaya Taiga Range). Tomsk State University Journal of Biology 3: 38–49.

Loiko SV, Bobrovsky MV, Novokreshchennykh TA (2013) Signs of Windthrow Morphogenesis in Background Soils of the Chernevaya Taiga (Case Study of the Tom-Yaya Interfluve). Tomsk State University Journal of Biology 4: 20–35.

Loiko SV, Gerasko LI, Kulizhskiy SP, Amelin II, Istigechev GI (2015) Soil Cover Structure in the Northern Part of the Chernevaya Taiga Range in the Southeast of Western Siberia. Eurasian Soil Science 48(4): 410–423. https://doi.org/10.7868/S0032180X15040061

Loiko S, Klimova N, Kuzmina D, Pokrovsky O (2020) Lake drainage in permafrost regions produces variable plant communities of high biomass and productivity. Plants 9: 867. https://doi.org/10.3390/plants9070867

Loiko SV, Klimova NV, Kritckov IV, Kuzmina DM, Kulizhsky SP (2023) Soils and vegetation of the riverside floodplain in the hydrological continuum of the southern tundra within the Pur-Taz interfluve (Western Siberia). Acta Biologica Sibirica 9: 293–315. https://doi.org/10.5281/zenodo.7879848

Loiko SV, Kriсkov IV, Shefer NV, Nedyak I, Manasypov RM, Kulizhskiy SP (2024) Soils and vegetation of the permafrost floodplain of the small river Tenyakha (Messoyakha basin, Western Siberia). Acta Biologica Sibirica. 10: 1779–1803. https://doi.org/10.5281/zenodo.12668698

Loranty MM, Goetz SJ (2012) Shrub expansion and climate feedbacks in Arctic tundra. Environmental Research Letters 7(1): 011005. https://doi.org/10.1088/1748-9326/7/1/011005

Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2025) cluster: Cluster Analysis Basics and Extensions. R package version 2.1.8.1. https://CRAN.R-project.org/package=cluster

Mann DH, Groves P, Reanier RE, Kunz ML (2010) Floodplains, permafrost, cottonwood trees, and peat: What happened the last time climate warmed suddenly in arctic Alaska? Quaternary Science Reviews 29: 3812–3830. https://doi.org/10.1016/j.quascirev.2010.09.002

Map of soil-ecological zoning of the Russian Federation: scale 1:8 000 000 (2020) Explanatory text and legend to the map. MAKS Press, Moscow, 98 pp. [In Russian]

Mekonnen Z, Riley W, Berner L, Bouskill N, Torn M, Iwahana G, Breen A, Myers-Smith I, Criado M, Liu Y (2021) Arctic tundra shrubification: A review of mechanisms and impacts on ecosystem carbon balance. Environmental Research Letters 16(5): 053001. https://doi.org/10.1088/1748-9326/abf28b

Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, MaciasFauria M, Sass-Klaassen U, Levesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Sc-Strub G, Wipf S, Rixen C, Menard CB, Venn S, Goetz S, Andreu-Hayles L, Elmendorf S, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters 6(4): 045509. https://doi.org/10.1088/1748-9326/6/4/045509

Myers-Smith IH, Kerby JT, Phoenix GK, Bjerke JW, Epstein HE, Assmann JJ, John C, Andreu-Hayles L, Angers-Blondin S, Beck PSA, Berner LT, Bhatt US, Bjorkman AD, Blok D, Bryn A, Christiansen CT, Cornelissen JHC, Cunliffe AM, Elmendorf SC, Forbes BC, Goetz SJ, Hollister RD, de Jong R, Loranty MM, Macias-Fauria M, Maseyk K, Normand S, Olofsson J, Parker TC, Parmentier F-JW, Post E, Schaepman-Strub G, Stordal F, Sullivan PF, Thomas HJD, Tømmervik H, Treharne R, Tweedie CE, Walker DA, Wilmking M, Wipf S (2020) Complexity revealed in the greening of the Arctic. Nature Climate Change 10(2): 106–117. https://doi.org/10.1038/s41558-019-0688-1

Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Solymos P, Stevens MHH, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Borman T, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista HBA, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill MO, Lahti L, Martino C, McGlinn D, Ouellette M-H, Ribeiro Cunha E, Smith T, Stier A, Ter Braak CJF, Weedon J (2025) vegan: Community Ecology Package. R package version 2.7-2. https://CRAN.R-project.org/package=vegan

Pedersen T (2025) patchwork: The Composer of Plots. R package version 1.3.2.9000. https://patchwork.data-imaginist.com

Pisarenko OU, Lapshina ED, Bezgodov AG (2017) On the bryoflora of the Yamalo-Nenets Autonomous Okrug. Turczaninowia 20(1): 35–51. https://doi.org/10.14258/turczaninowia.20.1.3 [In Russian]

Pismarkina EV, Byalt VV (2016) Materials for the study of biodiversity in the Yamalo-Nenets Autonomous District: vascular plants of the Nuny-Yaha River basin. Bulletin of the Orenburg State Pedagogical University 17: 49–69. [In Russian]

Reichle LM, Epstein HE, Bhatt US, Raynolds MK, Walker DA (2018) Spatial heterogeneity of the temporal dynamics of Arctic Tundra vegetation. Geophysical Research Letters 45(17): 9206–9215. https://doi.org/10.1029/2018GL078820

Syso AI, Sokolov DA, Siromlya TI, Ermolov YV, Makhatkov ID (2022) Anthropogenic transformation of soil properties in Taimyr landscapes. Eurasian Soil Science 55: 541–555. https://doi.org/10.1134/S1064229322050088

Tape K, Sturm M, Racine C (2006) The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Global Change Biology 12(4): 686–702. https://doi.org/10.1111/j.1365-2486.2006.01128.x

Tape KD, Hallinger M, Welker JM, Ruess RW (2012) Landscape Heterogeneity of Shrub Expansion in Arctic Alaska. Ecosystems 15(5): 711–724. https://doi.org/10.1007/s10021-012-9540-4

Tassone MS, Epstein HE, Armstrong AH, Bhatt US, Frost GV, Heim B, Raynolds MK, Walker DA (2024) Drivers of heterogeneity in tundra vegetation productivity on the Yamal Peninsula, Siberia, Russia. Environmental Research: Ecology 3: 015003. https://doi.org/10.1088/2752-664X/ad220f

Telyatnikov MYu, Troeva EI, Ermokhina KA, Pristyazhnyuk SA (2019) Vegetation of the two regions of the northern part of the Gydan Peninsula (the subzone of typical tundras). Turczaninowia 22(4): 128–144. https://doi.org/10.14258/turczaninowia.22.4.14 [In Russian]

Telyatnikov MYu, Khitun OV, Chernyadyeva IV, Kuzmina EYu, Ermokhina KA (2021) New data on vegetation in two areas of the southern part of the typical tundra subzone of the Gydan Peninsula. Turczaninowia 24(3): 5–23. https://doi.org/10.14258/turczaninowia.24.3.1 [In Russian]

Tishkov AA, Krenke AN (2015) "Greening" of the Arctic in the 21st century as a synergistic effect of global warming and economic development. Arctic: Ecology and Economics 4: 28–38. [In Russian]

Titov YuV, Potokin AF (2001) Vegetation of the Taz River floodplain. Surgut State University Publishing House, Surgut, 140 pp. [In Russian]

Trofimova IE, Balybina AS (2014) Classification of climates and climatic regionalization of the West-Siberian plain. Geography and Natural Resources 35: 114–122. [In Russian]

Vasiliev AA, Drozdov DS, Gravis AG, Malkova GV, Nyland KE, Streletskiy DA (2020) Permafrost degradation in the western Russian arctic. Environmental Research Letters 15(4): 045001. https://doi.org/10.1088/1748-9326/ab6f12

Villani M, Mauclet E, Agnan Y, Druel A, Jasinski B, Taylor M, Schuur EAG, Opfergelt S (2022) Mineral element recycling in topsoil following permafrost degradation and a vegetation shift in sub-Arctic tundra. Geoderma 421: 115915. https://doi.org/10.1016/j.geoderma.2022.115915

Vowles T, Björk RG (2019) Implications of evergreen shrub expansion in the Arctic. Journal of Ecology 107(2): 650–655. https://doi.org/10.1111/1365-2745.13081

Walker DA, Leibman MO, Epstein HE, Forbes BC, Bhatt US, Raynolds MK, Comiso JC, Gubarkov AA, Khomutov AV, Jia GJ (2009) Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index. Environmental Research Letters 4(4): 045004. https://doi.org/10.1088/1748-9326/4/4/045004

Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org

Wickham H, François R, Henry L, Müller K, Vaughan D (2025) dplyr: A Grammar of Data Manipulation. R package version 1.1.4. https://dplyr.tidyverse.org

Wickham H, Vaughan D, Girlich M (2025b) tidyr: Tidy Messy Data. R package version 1.3.1. https://tidyr.tidyverse.org

Wu Z, Dijkstra P, Koch GW, Peñuelas J, Hungate BA (2011) Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Global Change Biology 17(2): 927–942. https://doi.org/10.1111/j.1365-2486.2010.02302

Zarov EA, Golubyatnikov LL, Lapshina ED, Loiko SV (2021) Vegetation and Soils of Tundra Landscapes in the Pur–Taz Interfluvial Region. Biology Bulletin of the Russian Academy of Sciences 48: S118–S127. https://doi.org/10.1134/S1062359022010186

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.

Скачивания

Данные скачивания пока недоступны.