Seasonal changes in dehydrin composition in Picea obovata Ledeb. from the cryolithozone of Yakutia

Как цитировать

Tatarinova, T. D., Ponomarev, A. G., Perk, A. A., & Vasileva, I. V. (2025). Seasonal changes in dehydrin composition in Picea obovata Ledeb. from the cryolithozone of Yakutia. Acta Biologica Sibirica, 11. извлечено от https://journal.asu.ru/biol/article/view/18640

Аннотация

This study presents the first analysis of the composition and seasonal dynamics of low-temperature-induced dehydrins in the shoots of Siberian spruce (Picea obovata Ledeb.) from the cryolithozone of Central Yakutia. Dehydrins were identified using antibodies specific to the conserved K-segment. Most major dehydrins (17–57 kDa) were present constitutively throughout the annual cycle. In contrast, low-molecular-weight dehydrins (13 and 15 kDa) were seasonal and inducible, disappearing in summer and reappearing during autumn cold acclimation. High levels of major dehydrins persisted through the winter, coinciding with ultra-low temperatures and maximum frost resistance. These dynamics and the substantial abundance of dehydrins are likely key to the unique extreme cold adaptation of P. obovata in the Yakutian cryolithozone.

Литература

Allagulova ChR, Gimalov FR, Shakirova FM, Vakhitov VA (2003) The plant dehydrins: structure and putative functions. Biochemistry 68(9): 945–951. https://doi.org/10.1023/A:1026077825584

Angelcheva L, Mishra Y, Antti H, Kjellsen TD, Funk C, Strimbeck RG, et al. (2014) Metabolomic analysis of extreme freezing tolerance in Siberian spruce (Picea obovata). New Phytologist 204(3): 545–555. https://doi.org/10.1111/nph.12950

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1–2): 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Chang CY, Bräutigam K, Huner NP, Ensminger I (2021) Champions of winter survival: cold acclimation and molecular regulation of cold hardiness in evergreen conifers. New Phytologist 229: 675. https://doi.org/10.1111/nph.16904

Chang CY, Fréchette E, Unda F, Mansfield SD, Ensminger I (2016) Elevated temperature and CO2 stimulate late-season photosynthesis but impair cold hardening in pine. Plant Physiology 172(2): 802–818. https://doi.org/10.1104/pp.16.0075

Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiologia Plantarum 97: 795–803. https://doi.org/10.1111/j.1399-3054.1996.tb00546.x

Cuevas-Velazquez CL, Rendón-Luna DF, Covarrubias AA (2014) Dissecting the cryoprotection mechanisms for dehydrins. Frontiers in Plant Science 5(1): 583. https://doi.org/10.3389/fpls.2014.00583

Hara M (2010) The multifunctionality of dehydrins. Plant Signaling & Behavior 5: 503. https://doi.org/10.4161/psb.11085

Karas M, Vešelényiová D, Boszorádová E, Nemeček P, Gerši Z, Moravčíková A (2024) Comparative analysis of dehydrins from woody plant species. Biomolecules 14(3): 250. https://doi.org/10.3390/biom14030250

Kjellsen TD, Yakovlev IA, Fossdal CG, Strimbeck GR (2013) Dehydrin accumulation and extreme low-temperature tolerance in Siberian spruce (Picea obovata). Tree Physiology 33: 1354–1366. https://doi.org/10.1093/treephys/tpt105

Kontunen-Soppela S, Laine K (2001) Seasonal fluctuation of dehydrins is related to osmotic status in Scot spine needles. Trees Structure and Function 15: 425–430. https://doi.org/10.1093/jxb/erh045

Korotaeva NE., Oskorbina MV, Kopytova LD, Suvorova GG, Borovskii GB, Voinikov VK (2012) Variations in the content of stress proteins in the needles of common pine (Pinus sylvestris L.) within an annual cycle. Journal of Forest Research 17: 89–97. https://doi.org/10.1007/s10310-011-0260-y

Korotaeva NE, Ivanova MV, Suvorova GG, Borovskii GB (2020) Dehydrins in the adaptation of common pine and Siberian spruce to growing conditions during vegetation period. Sibirskii lesnoi zhurnal = Siberian Journal of Forest Science 6: 54–63. (In Russian). https://doi.org/10.1007/s10310-011-0260-y

Kosova K, Prasil IT, Vitamvas P (2010) Role of dehydrins in plant stress response. Handbook of Plant and Crop Stress. Tucson: CRC Press. 239–285. https://doi.org/10.1201/b10329-13

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685. https://www.nature.com/articles/227680a0#citeas

Li CY, Junttila O, Palva ET (2004) Environmental regulation and physiological basis of freezing tolerance in woody plants. Acta Physiologiae Plantarum 26(2): 213–222. https://doi.org/10.1007/s11738-004-0010-2

Liu JJ, Ekramoddoullah AKM, Taylor D, Piggott N, Lane S, Hawkins B (2004) Characterization of Picg5 novel proteins associated with seasonal cold acclimation of white spruce (Picea glauca). Trees Structure and Function 18: 649–657. https://doi.org/10.1007/s00468-004-0336-9

Malik AA, Veltri MA, Boddington KF, Singh K, Grather SP (2017) Genome analysis of conserved dehydrin motifs in vascular plants. Frontiers in Plant Science 8: 1–18. https://doi.org/10.3389/fpls.2017.00709

Pozdnyakov LK (1986) Permafrost forestry. Nauka Publishers, Novosibirsk. 192 рp.

Rigault P, Boyle B, Lepage P, Cooke JEK, Bousquet J, MacKay JJ (2011) A white spruce gene catalog for conifer genome analyses. Plant Physiology 157(1): 14–28. https://doi.org/10.1104/pp.111.179663

Sena JS, Giguère I, Rigault P, Bousquet J, Mackay J (2017) Expansion of the dehydrin gene family in the Pinaceae is associated with considerable structural diversity and drought-responsive expression. Tree Physiology 38(3): 1–15. https://doi.org/10.1093/treephys/tpx125

Strimbeck GR, Kjellsen TD, Schaberg PG, Murakami PF (2007) Cold in the common garden: comparative low-temperature tolerance of boreal and temperate conifer foliage. Trees: Structure and Function 21(5): 557–567. http://dx.doi.org/10.1007/s00468-007-0151-1

Strimbeck GR, Schaberg PG, Fossdal CG, Schroder WP, Kjellsen TD (2015) Extreme low temperature tolerance in woody plants. Frontiers in Plant Science 6: 1–15. https://doi.org/10.3389/fpls.2015.00884

Tatarinova TD, Perk AA, Bubyakina VV, Vasilieva IV, Ponomarev AG, Maximov TC (2017) Dehydrin stress proteins in Pinus sylvestris L. needles under conditions of extreme climate of Yakutia. Doklady Biochemistry and Biophysics 473(1): 98–101. https://doi.org/10.7868/S0869565217080242

Tatarinova TD, Perk AA, Ponomarev AG, Vasileva IV (2023) Relationship between dehydrins and adaptation of Cajander Larch to Yakutia cryolithozone conditions. Russian Journal of Plant Physiology 70(5): 99. https://doi.org/10.1134/s1021443723600848

Timmons TM, Dunbar BS (1990) Protein blotting and immunodetection. Methods Enzymology 182: 679–688. https://doi.org/10.1016/0076-6879(90)82053-5

Timofeev PA (2003) Forests of Yakutia: composition, resources, use and protection. Publishers SB RAS, Novosibirsk. 194 pp.

Welling A, Palva ET (2006) Molecular control of cold acclimation in trees. Physiologia Plantarum 127(2): 167–181. https://doi.org/10.1111/j.1399-3054.2006.00672.x

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.

Скачивания

Данные скачивания пока недоступны.