PLANT POLYSACCHARIDE XYLOGLUCAN AND ENZYMES THAT HYDROLIZE IT (REVIEW)

  • Артем (Artem) Валерьевич (Valer'yevich) Завьялов (Zavyalov) National Research Center "Kurchatov Institute" - State Research Institute of Genetics and Selection of Industrial Micro-organisms Email: lab12@genetika.ru
  • Сергей (Sergey) Викторович (Viktorovich) Рыков (Rykov) National Research Center "Kurchatov Institute" - State Research Institute of Genetics and Selection of Industrial Micro-organisms Email: enterru@yandex.ru
  • Наталия (Nataliya) Александровна (Aleksandrovna) Лунина (Lunina) Institute of Molecular Genetics Email: lunina@img.ras.ru
  • Валентина (Valentina) Ивановна (Ivanovna) Сушкова (Sushkova) National Research Center "Kurchatov Institute" - State Research Institute of Genetics and Selection of Industrial Micro-organisms Email: sushkovaval@mail.ru
  • Сергей (Sergey) Викторович (Viktorovich) Яроцкий (Yarotsky) National Research Center "Kurchatov Institute" - State Research Institute of Genetics and Selection of Industrial Micro-organisms Email: yarotsky@genetika.ru
  • Оксана (Oksana) Валентиновна (Valentinovna) Березина (Berezina) National Research Center "Kurchatov Institute" - State Research Institute of Genetics and Selection of Industrial Micro-organisms Email: mashchenko@yandex.ru
Keywords: review, plant biomass, primary cell wall, hemicellulose, xyloglucan, glycoside hydrolase families, glycosyltransferase, xyloglucanase

Abstract

Various types of plant raw material are widely used in the pulp and paper, textile, food, agricultural industries, and pharmacology. One of the problems of utilizing the complex plant biomass is the weak knowledge of its hemicellulose content and the lack of effective enzymes for hydrolysis of hemicelluloses.

Xyloglucan is the major structural and storage polysaccharide in all dicots and many monocots. It has a branched architecture with a backbone constructed of β-1,4-connected cellotetraose units decorated with short side chains composed of xylose, galactose, arabinose, fucose and some other residues. Side chain composition and alternation order are specie-specific and can change during cell growth resulting in variety of xyloglucan structural types. In general, xyloglucan structure depends on taxonomic position of the plant. Structural features of xyloglucans belonging to different taxonomic groups are discussed in the evolutionary aspect.

Xyloglucan hydrolysis is a necessary condition during conversion of plant biomass into high added value products. Variety of xyloglucan structural types complicates selection of enzymes for its hydrolysis. Xyloglucanase-containing multienzyme complexes can be used for efficient decomposition of plant biomass polysaccharides into fermentable sugars for biotechnology, and for improvement of the feed quality. Investigation of xyloglucanases is necessary for the development of methods for protecting plants from pathogenic microorganisms which use these enzymes for invasion into plant tissue.

The article reviewed structural features of xyloglucans from different taxonomic groups in the evolutionary aspect. Selection of xyloglucanases for efficient hydrolysis of complex plant biomass is discussed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Артем (Artem) Валерьевич (Valer'yevich) Завьялов (Zavyalov), National Research Center "Kurchatov Institute" - State Research Institute of Genetics and Selection of Industrial Micro-organisms

аспирант

Сергей (Sergey) Викторович (Viktorovich) Рыков (Rykov), National Research Center "Kurchatov Institute" - State Research Institute of Genetics and Selection of Industrial Micro-organisms

кандидат биологических наук, научный сотрудник лаборатории технологического развития

Наталия (Nataliya) Александровна (Aleksandrovna) Лунина (Lunina), Institute of Molecular Genetics

кандидат биологических наук, научный сотрудник лаборатории белковой инженерии

Валентина (Valentina) Ивановна (Ivanovna) Сушкова (Sushkova), National Research Center "Kurchatov Institute" - State Research Institute of Genetics and Selection of Industrial Micro-organisms

доктор биологических наук, научный консультант лаборатории технологического развития

Сергей (Sergey) Викторович (Viktorovich) Яроцкий (Yarotsky), National Research Center "Kurchatov Institute" - State Research Institute of Genetics and Selection of Industrial Micro-organisms

кандидат химических наук, заведующий лабораторией технологического развития

Оксана (Oksana) Валентиновна (Valentinovna) Березина (Berezina), National Research Center "Kurchatov Institute" - State Research Institute of Genetics and Selection of Industrial Micro-organisms

кандидат биологических наук, старший научный сотрудник лаборатории технологического развития

References

Carpita N.C., Defernez M., Findlay K., Wells B., Shoue D.A., Catchpole G., Wilson R.H., McCann M.C. Plant. Phy-siol., 2001, vol. 127, no. 2, pp. 551–565.

Gorshkova T.A. Rastitel'naia kletochnaia stenka kak dinamichnaia sistema. [Plant cell wall as a dynamic system]. Moscow, 2007, 426 p. (in Russ.).

Fry S.C. Ann. Rev. Plant Physiol., 1986, vol. 37, pp. 165–186.

Bacic A., Harris P.J., Stone B.A. The Biochemistry of Plants: A Comprehensive Treatise, Vol. 14: Carbohydrates, New-York; London, Academic Press., 1988, pp. 297–371.

Dudkin M.S., Gromov V.S. Gemitselliulozy. [Hemicellulose]. Riga, 1991, 488 p. (in Russ.).

McNeil M., Darvill A.G., Fry S.C. Albersheim P. Annu. Rev. Biochem., 1984, vol. 53, pp. 625–663.

Fry S.C. J. Exp. Bot., 1989, vol. 40, no. 210, pp. 1–11.

Fry S.C., Aldington S., Hetherington P.R., Aitken J. Plant Physiol., 1993, vol. 103, no. 1, pp. 1–5.

Schultink A., Liu L., Zhu L., Pauly M. Plants, 2014, vol. 3, no. 4, pp. 526–542.

Fry S.C., York W.S., Albersheim P., Darvill A., Hayashi T., Joseleau J.P., Kato Y., Lorences E.P., Maclachlan G.A., McNeil M., Mort A.J., Reid J.S.G., Seitz H.U., Selvendran R.R., Voragen A.G.J., White A.R. Physiol. Plant, 1993, vol. 89, no. 1, pp. 1–3.

Popper Z.A., Fry S.C. Ann. Bot., 2003, vol. 91, no. 1, pp. 1–12.

Popper Z.A., Fry S.C. New Phytol., 2004, vol. 164, no. 1, pp. 165–174.

Vissenberg K., Sandt V.V., Fry S.C., Verbelen J.-P. J. Exp. Bot., 2003, vol. 54, no. 381, pp. 335–344.

Peña M.J., Darvill A.G., Eberhard S., York W.S., O'Neill M.A. Glycobiology, 2008, vol. 18, no. 11, pp. 891–904.

Hsieh Y.S., Harris P.J. Phytochemistry, 2012, vol. 79, pp. 87–101.

Kakegawa K., Edashige Y., Ishii T. Phytochemistry, 1998, vol. 47, no. 5, pp. 767–771.

Hoffman M., Jia Z., Pena M.J. et al. Carbohydr. Res., 2005, vol. 340, no. 11, pp. 1826–1840.

Buckeridge M.S. Plant Physiol., 2000, vol. 154, no. 3, pp. 1017–1023.

Vinueza N.R., Gallardo V.A., Klimek J.F., Carpita N.C, Kenttämaa H.I. et al. Carbohydr. Polym., 2013, vol. 98, no. 1, pp. 1203–1213.

Aboughe-Angone S., Nguema-Ona E., Ghosh P., Lerouge P., Ishii T., Ray B., Driouich A. Carbohydr. Res., 2008, vol. 343, no. 1, pp. 67–72.

Jia Z., Cash M., Darvill A.G., York W.S. Carbohydr. Res., 2005, vol. 340, no. 11, pp. 1818–1825.

Jia Z., Qin Q., Darvill A.G., York W.S. Carbohydr. Res., 2003, vol. 338, no. 11, pp. 1197–1208.

Assor C., Quemener B., Vigouroux J., Lahaye M. Carbohydr. Polym., 2013, vol. 94, no. 1, pp. 46–55.

Galvez-Lopez D.F., Laurens B. Int. J. Biol. Macromol., 2011, vol. 49, no. 5, pp. 1104–1109.

Ray S., Vigouroux J., Quémener B., Bonnin E., Lahaye M. Carbohydr. Polym., 2014, vol. 108, pp. 46–57.

Lahaye M., Falourd X., Quemener B., Ralet M.C., Howad W., Dirlewanger E., Arús P. J. Agric. Food. Chem., 2012, vol. 60, no. 26, pp. 6594–6605.

Lerouxel O., Choo T.S., Seveno M., Usadel B., Faye L., Lerouge P., Pauly M. Plant Physiol., 2002, vol. 130, no. 4, pp. 1754–1763.

Louvet R., Rayon C., Domon M.-J., Rusterucci C., Fournet F., Leaustic A., Crépeau M.J., Ralet M.C., Rihouey C., Bardor M., Lerouge P., Gillet F., Pelloux J. Phytochemistry, 2011, vol. 72, no. 1, pp. 59–67.

Peña M.J., Kong Y., York W.S., O’Neill M.A. Plant Cell., 2012, vol. 24, no. 11, pp. 4511–4524.

Pustjens A.M., Schols H.A., Kabel M.A., Gruppen H. Carbohydr. Polym., 2013, vol. 98, no. 2, pp. 1650–1656.

Huisman M., Weel K., Schols H., Voragen A.G.J. Carbohydr. Polym., 2000, vol. 42, no. 2, pp. 185–191.

Alonso-Simón A., Neumetzler L., García-Angulo P., Encina A.E., Acebes J.L., Álvarez J.M., Hayashi T. Mol. Plant., 2010, vol. 3, no. 3, pp. 603–609.

Ren Y., Picout D.R., Ellis P.R., Ross-Murphy S.B., Reid J.S. Carbohydr. Res., 2005, vol. 340, no. 5, pp. 997–1005.

Pauly M., Qin Q., Greene H., Albersheim P., Darvill A., York W.S. Planta, 2001, vol. 212, no. 5-6, pp. 842–850.

York W.S., Oates J.E., Van Halbeck H., Darvill A.G., Albersheim P., Tiller P.R. Dell A. Carbohydr. Res., 1988, vol. 173(1), pp. 113–132.

Takhtadjan A. Diversity and classification of flowering plants. New-York, Columbia Univ. Press, 1997, 643 p.

Verma D.P.S., Maclachlan G.A., Byrne H., Ewings D. J. Biol. Chem., 1975, vol. 250, no. 3, pp. 1019–1026.

Hayashi T., Maclachlan G. Plant Physiol., 1984, vol. 76, no. 3, pp. 739–742.

Planta E.M., Dea I.C.M., Bulpin P.V. Planta, 1985, vol. 163, no. 1, pp. 133–140.

Siddalinga Murthy K.R., Kantharaju S. Medicines, 2014, vol. 2, no. 4, pp. 36–43.

Koyama T., Hayashi T., Kato Y., Matsuda K. Plant Cell Physiology, 1983, vol. 24, no. 2, pp. 155–162.

O'Neil R.A., White A.R., York W.S., Darvill A.G., Albersheim P. Phytochemistry, 1988, vol. 27, no. 2, pp. 329–333.

Fry S.C., Smith R.C., Renwick K.F., Martin D.J., Hodge S.K., Matthews K.J. Biochem., 1992, vol. 282, pp. 821–828.

Nishitani K., Tominaga R. J. Biol. Chem., 1992, vol. 267, no. 29, pp. 21058–21064.

Rose J.K.C., Braam J., Fry S.C., Nishitani K. Plant Cell. Physiol., 2002, vol. 43(12), pp. 1421–1435.

Eklöf J.M., Brumer H. Plant Physiol., 2010, vol. 153, no. 2, pp. 456–466.

Ito H., Nishitani K. Plant Cell Physiol., 1999, vol. 40, no. 11, pp. 1172–1176.

Vissenberg K., Martinez-Vilchez I.M., Verbelen J.-P., Miller J.G. Plant Cell., 2000, vol. 12, no. 7, pp. 1229–1238.

Mellerowicz E.J., Immerzeel P., Hayashi T. Ann Bot., 2008, vol. 102, no. 2, pp. 659–665.

Thompson J.E., Smith R.C., Fry S.C. Biochem J., 1997, vol. 327, pp. 699–708.

Thompson J.E., Fry S.C. Plant J., 2001, vol. 26, no. 1, pp. 23–34.

Maris A., Suslov D., Fry S.C., Verbelen J.P. J. Exp. Bot., 2009, vol. 60, no. 13, pp. 3959–3972.

Sasidharan R., Chinnappa C.C., Staal M., Elzenga J.T., Yokoyama R., Nishitani K., Voesenek L.A., Pierik R. Plant Physiol., 2010, vol. 154, no. 2, pp. 978–990.

Harada T., Torii Y., Morita S. et al. J. Exp. Bot., 2011, vol. 62, no. 2, pp. 815–823.

Miedes E., Zarra I., Hoson T. et al. J. Plant Physiol., 2011, vol. 168, no. 3, pp. 196–203.

Frankova L., Fry S.C. Plant J., 2012, vol. 71, no. 1, pp. 45–60.

Edwards M., Dea I.C.M., Bulpin P.V., Reid J.S.G. J. Biol. Chem., 1986, vol. 261, no. 20, pp. 9489–9494.

Fanutti C., Gidley M.J., Reid J.S.G. Plant J., 1993, vol. 3, no. 5, pp. 691–700.

Hanna R., Brummell D.A., Camirand A., Hensel A., Russell E.F., Maclachlan G.A. Arch. Biochem. Biophy., 1991, vol. 290, no. 1, pp. 7–13.

Redgwel R.J., Fry S.C. Plant. Physiol., 1993, vol. 103, no. 4, pp. 1399–1406.

Lashbrook C.C., Gonzalez-Bosch C., Bennet A. Plant Cell., 1994, vol. 6, no. 10, pp. 1485–1493.

Gloster T.M., Ibatullin F.M., Macauley K., Eklöf J.M., Roberts S., Turkenburg J.P., Bjørnvad M.E., Jørgensen P.L., Danielsen S., Johansen K.S., Borchert T.V., Wilson K.S., Brumer H., Davies G.J. J. Biol. Chem., 2007, vol. 282, no. 26, pp. 19177–19189.

Mark P., Baumann M.J., Eklöf J.M., Gullfot F., Michel G., Kallas A.M., Teeri T.T., Brumer H., Czjzek M. Proteins, 2009, vol. 75, no. 4, pp. 820–836.

Patent 6815192 (US). 2004.

Martinez-Fleites C., Guerreiro C.I., Baumann M.J., Taylor E.J., Prates J.A., Ferreira L.M., Fontes C.M., Brumer H., Davies G.J. J. Biol. Chem., 2006, vol. 281, no. 34, pp. 24922–24933.

Yaoi K., Kondo H., Noro N., Suzuki M., Tsuda S., Mitsuishi Y. Structure, 2004, vol. 12, no. 7, pp. 1209–1217.

MacKenzie L.F., Sulzenbacher G., Divne C., Jones T.A., Wöldike H.F., Schülein M., Withers S.G., Davies G.J. Bio-chem J., 1998, vol. 335, pp. 409–416.

Chhabra S.R., Kelly R.M. FEBS Lett., 2002, vol. 531, no. 2, pp. 375–380.

Larner J. The Enzymes, New York, Academic Press, 1960, vol. 4, pp. 369–378.

Yao K., Mitsuishi Y. J. Biol. Chem., 2002, vol. 277, no. 50, pp. 48276–48281.

Pauly M., Andersen L.N., Kaupinnen S., Kofod L.V., York W.S., Albersheim P., Darvill A. Glycobiology, 1999, vol. 9, no. 1, pp. 93–100.

Rabinovich M.L., Melnick M.S., Bolobova A.V. Biochemistry, 2002, vol. 67, no. 8, pp. 850–571.

Davies G., Henrissat B. Structure, 1995, vol. 3, no. 9, pp. 853–859.

McCarte J.D., Withers S.G. Curr. Opin. Struct. Biol., 1994, vol. 4, no. 6, pp. 885–892.

Henrissat B., Davies G. Curr. Opin. Struct. Biol., 1997, vol. 7, no. 5, pp. 637–644.

Vasella A., Davies G.J., Bohm M. Curr. Opin. Chem. Biol., 2002, vol. 6, no. 5, pp. 619–629.

Henrissat B., Bairoch A. Biochem. J., 1993, vol. 293, pp. 781–788.

Gebler J., Gilkes N.R., Claeyssens M., Wilson D.B., Béguin P., Wakarchuk W.W., Kilburn D.G., Miller R.C. Jr., Warren R.A., Withers S.G. J. Biol. Chem., 1992, vol. 267, no. 18, pp. 12559–12561.

Gloster T.M., Turkenburg J.P., Potts J.R., Henrissat B., Davies G.J. Chem. Biol., 2008, vol. 15, no. 10, pp. 1058–1067.

Rye C.S., Withers S.G. Curr. Opin. Chem. Biol., 2000, vol. 4, no. 5, pp. 573–580.

Thompson J., Ruvinov S.B., Freedberg D.I., Hall B.G. J. Bacteriol., 1999, vol. 181, no. 23, pp. 7339–7345.

Ichinose H., Araki Y., Michikawa M., Harazono K., Yaoi K., Karita S., Kaneko S. Appl. Environ. Microbiol., 2012, vol. 78, no. 22, pp. 7939–7945.

Qi H., Bai F., Liu A. Biochemistry, 2013, vol. 78, no. 4, pp. 548–555.

Grishutin S.G., Gusakov A.V., Markov A.V., Ustinov B.B., Semenova M.V., Sinitsyn A.P. Biochim. Biophys. Acta., 2004, vol. 1674, pp. 268–281.

Yaoi K., Mitsuishi Y. FEBS Lett., 2004, vol. 560, pp. 45–50.

Yaoi K., Mitsuishi Y. J. Biol. Chem., 2002, vol. 277, no. 50, pp. 48276–48281.

Master E.R., Zheng Y., Storms R., Tsang A., Powlowski J. Biochem. J., 2008, vol. 411, no. 1, pp. 161–170.

Hasper A., Dekkers E., van Mill M., van de Vondervoort P.J., de Graaff L.H. Appl. Environ. Microbiol., 2002, vol. 68, no. 4, pp. 1556–1560.

Takada G., Kawasaki M., Kitawaki M., Kawaguchi T., Sumitani J., Izumori K., Arai M. J. Biosci. Bioeng., 2002, vol. 94, no. 5, pp. 482–485.

Damasio A.R.L., Pessela B.C., Mateo C., Segato F., Prade R.A., Guisan J.M., Polizeli M.L.T.M. J. Mol. Catal B En-zym., 2012, vol. 77, pp. 39–45.

Markov A.V., Gusakov A.V., Kondratyeva E.G., Okunev O.N., Bekkarevich A.O., Sinitsyn A.P. Biochemistry, 2005, vol. 70, no. 6, pp. 657–663.

Patent 20040067569A1 (US). 2004.

Ishida T., Yaoi K., Hiyoshi A., Igarashi K., Samejima M. FEBS J., 2007, vol. 274, no. 21, pp. 5727–5736.

Sinitsyna O.A., Fedorova E.A., Pravilnikov A.G., Rozhkova A.M., Skomarovsky A.A., Matys V.Y., Bubnova T.M., Okunev O.N., Vinetsky Y.P., Sinitsyn A.P. Biochemistry, 2010, vol. 75, no. 1, pp. 41–49.

Patent 2358756 (RU). 2009.

Habrylo O., Song X., Forster A., Jeltsch J.M., Phalip V. J. Microbiol Biotechnol., 2012, vol. 22, no. 8, pp. 1118–1126.

Song S., Tang Y., Yang S., Yan Q., Zhou P., Jiang Z. Appl. Microbiol. Biotechnol., 2013, vol. 97(23), pp. 10013–10024.

Vlasenko E.Y., Ding H., Labavitch J.M., Shoemaker S.P. Biores. Technol., 1997, vol. 59, pp. 109–119.

Baker J.O., Adney W.S., Nleves R.A., Thomas S., Wilson D., Himmel M.E. Appl. Biochem. Biotechnology, 1994, vol. 45, no. 1, pp. 245–256.

Biswas, G.C.G., Ransom C., Sticklen M. Plant Sci., 2006, vol. 171, no. 5, pp. 617–623.

Takeda T., Nakano Y., Takahashi M., Sakamoto Y., Konno N. Agric. Food Chem., 2013, vol. 61, no. 31, pp. 7591–7598.

Patent 2014138983A1 (WO). 2014.

Patent 2014110675A1 (WO). 2014.

Patent 6500658 (US). 2002.

Patent 2012092676 (WO). 2012.

Patent 2361918 (RU). 2009.

Patent 2323254 (RU). 2008.

Patent 2303057 (RU). 2007.

Krestyanova I.N., Sakhibgaraeva L.F., Berezina O.V., Rykov S.V., Zavyalov A.V., Zverlov V.V., Yarotsky S.V. Mol. Gen. Microbiol. Virol., 2016, vol. 31, no. 3, pp. 149–155.

Berezina O.V., Herlet J., Rykov S.V., Kornberger P., Zavyalov A., Kozlov D., Sakhibgaraeva L., Krestyanova I., Schwarz W.H., Zverlov V.V., Liebl W., Yarotsky S.V. Appl. Microbiol. Biotechnol., 2017, vol. 101, no. 14, pp. 5653–5666.

Zverlov V.V., Schantz N., Schmitt-Kopplin P., Schwarz W.H. Microbiology, 2005, vol. 151, pp. 3395–3401.

Ravachol J., de Philip P., Borne R. et al. Sci. Rep., 2016, vol. 6, p. 22770.

Sinitsyn A.P. 23-i Nauch-no-prakticheskii seminar po optimizatsii kormleniia sel'skokhoziaistvennykh zhivotnykh. OOO «Agroferment», 23 oktiabria 2015 g. [23rd Scientific and Practical Workshop on Optimization of Feeding of Farm Animals. LLC Agroferment, October 23, 2015]. URL: http://agroferment.ru/images/ferm2.pdf (in Russ.).

Heimbach J. Determination of the GRAS status of the addition of tamarind seed polysaccharide to conventional foods as a stabilizer and thickener, Prepared for DSP GOKYO FOOD & CHEMICAL Co., Ltd. Osaka, Japan, 2014.

Арабиноксилоглюкан пасленовых
Published
2018-12-11
How to Cite
1. Завьялов (Zavyalov)А. (Artem) В. (Valer’yevich), Рыков (Rykov)С. (Sergey) В. (Viktorovich), Лунина (Lunina)Н. (Nataliya) А. (Aleksandrovna), Сушкова (Sushkova)В. (Valentina) И. (Ivanovna), Яроцкий (Yarotsky)С. (Sergey) В. (Viktorovich), Березина (Berezina)О. (Oksana) В. (Valentinovna) PLANT POLYSACCHARIDE XYLOGLUCAN AND ENZYMES THAT HYDROLIZE IT (REVIEW) // chemistry of plant raw material, 2018. № 4. P. 43-61. URL: http://journal.asu.ru/cw/article/view/3926.
Section
Reviews