The state of agrocenosises and hayfield meadows in farm units of Prialeisk soil and climate zone (Altai Krai)
PDF
XML

Keywords

Agrocenoses
hayland
haylages
Altai krai
vegetation index
biologization of agriculture

How to Cite

Ovcharova, N. V., Silantieva, M. M., Zhukova, E. Y., Sokolova, L. V., Elesova, N. V., Riabtsev, V. I., & Zakrevskiy, A. K. (2022). The state of agrocenosises and hayfield meadows in farm units of Prialeisk soil and climate zone (Altai Krai). Acta Biologica Sibirica, 8, 733–748. https://doi.org/10.5281/zenodo.7750948

Abstract

This paper presents the results of the estimation of agrocenoses and hayfield meadows of Prialeisk soil and climate zone in Altai krai. For the period 2001-2021 there is a pronounced trend for increasing yields in almost all crops. The exception includes only permanent grasses for green feed which is explained by aridization of the climate and the established agrotechnology in recent decades. Data analysis shows that planting acreages have decreased for such crops as spring wheat (from 107.3 thousand ha in 2001 to 59.7 thousand ha in 2021), oat (from 8.6 thousand ha in 2001 to 6.2 thousand ha in 2021) and permanent grasses (from 15.4 thousand ha in 2001 to 4.8 thousand ha in 2021). When estimating the monitoring areas with agrocenoses on the water index calculated using Sentinel-2 data it was identified that for sainfoin, linen, sunflower, lucerne and corn the range of NDWI values ranged from -0.2 to 0.4. Whereas they were drought tolerant crops, stress was insignificant. Hayland haylages as forage lands did not have any negative index values. For oat and soy, the index indicators were lower, the values ranged from -0.2 to 0.25. A value range for wheat varied from -0.2 to 0.3. Buckwheat was rich in phytomass and the NDWI value range was from -0.1 to 0.45. That gave evidence of the sufficient water availability of the crop. Agrocenoses productivity depended on the level of the area moistening and the soil and climate conditions were fairly homogeneous on the selected territories as correlation between ARVI and NDWI values was 0.9. According to the satellite data the most productive ones were oat crops with sainfoin and buckwheat.

https://doi.org/10.5281/zenodo.7750948
PDF
XML

References

Aivazian SA, Mkhitarian VS (1998) Applied statistics and fundamentals of econometrics. UNITY, Moscow, 1022 pp. [In Russian]

Cherepanov AS (2011) Vegetation indexes. Geomatica 2: 98–102. [In Russian] Domsch H (2001) Was bringt die Kartierung Elektrische Bodenleitfahigkeit. Neue Landwirtschaft 6: 44–48.

Greig-Smith P (1984) Quantitative Plant Ecology. Nauka, Moscow, 318 pp. [In Russian]

Khalin NS, Nazarova IV, Dammer VA (2020) Soil and climatic resources of Altai Krai (Handbook). Barnaul, 132 pp. [In Russian]

Khalin NS, Nazarova IV, Simakova SA, Dymov LV, Marinenko EA (2018) Monitoring of soil fertility of agricultural lands of Altai Krai. Guide. Paragraph, Barnaul, 382 pp. [In Russian]

Kravtsov SL (2010) Estimation of the humidity of the Earth's surface using remote sensing images of the Earth. Informatika 4 (28): 27–35. [In Russian]

Kudriashova SY, Gagarin AI, Yurlova VA (2014) Topical issues of ecological and economic estimation of lands. Interexpo GEO-Siberia-2014. X International Scientific Congress and Exhibition (April 8-18, 2014). Volume 1. SSGA, Novosibirsk, 319–324 p. [In Russian]

Lachuga YF (2005) Precision agriculture and animal husbandry – the general direction of agricultural production development in the XXI century. Materials of the 3rd scientific and practical conference "Machine technologies of production in the system of precision agriculture and animal husbandry". SSI PTM, Moscow, 8–11 p. [In Russian]

Lekomtsev PV (2015) Scientific and methodological support for the management of the production process of spring wheat in the precision agriculture system. Dissertation for the Doctor Academic Degree of Biological Sciences. Agrophysical Scientific Research Institute, St. Petersburg. [In Russian]

Liu Y, Qian J, Yue H (2021) Combined Sentinel-1a with Sentinel-2a to Estimate Soil Moisture in Farmland. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14: 1292–1310. https://doi.org/10.1109/JS-TARS.2020.3043628

Osorgin YV (2020) The Use of Sentinel-2 Satellite Photos for the Determination of Nitrogen in Spring Wheat in the Conditions of the Forest-Steppe of the Samara Oblast. Proceedings of the Conference "Innovative Achievements of Science and Technology of the Agroindustrial Complex" (Kinel, December 1-2, 2020), Kinel, 93–97. [In Russian]

Ramadhani F, Kereszturi G, Procter J, Pullanagari R (2020) Automatic Mapping of Rice Growth Stages Using the Integration of Sentinel-2, Mod13q1, and Sentinel-1. Remote sensing 12 (21): 1–21. https://doi.org/10.3390/rs12213613

Rysin LP (2007) Stationary Research in Geobotany. Actual Problems of Geobotany: Materials of the III All-Russian School-Conference. Karelian Scientific Center of the Russian Academy of Sciences, Petrozavodsk, 340–348. [In Russian]

Shpaar D, Laithold P, Dammer KKh, Pheiffer A (2008) Differentiated Management of Crops Taking into Account the Heterogeneity of Fields within Precision Agriculture. Materials of the International Scientific and Practical Conference "Agrotechnologies of the XXI century". Publishing house of RSAU-MTAA – MTAA named after Timiriazev K.A., Moscow, 6–8 p. [In Russian]

Sačkov I, Pajtík J, Sedliak M, Barka I, Papčo J, Feranec J, Bucha T (2021) Woody Above-Ground Biomass Estimation on Abandoned Agriculture Land Using Sentinel-1 and Sentinel-2 Data. Remote Sensing 13 (13): 2488. https://doi.org/10.3390/rs13132488

Terekhin EA (2019) Evaluation of the Projective Vegetation Coverage of Agroecosystems According to Sentinel-2. Materials of the 17th All-Russian Open Conference "Modern Problems of Remote Sensing of the Ground from Space" (Moscow, November 11-15, 2019). Moscow, 455 pp. [In Russian]

Tovkach VA, Shkutov EN (2008) Prospects and Possibilities of Remote Sensing of the Ground in the Organization of Monitoring of the State of Reclamation Sys- tems of Polesie. Land Reclamation 1 (59): 14–25. [In Russian]

Yunnatov AA (1964) Types and Content of Geobotanical Studies. Selection of Trial Areas and Laying of Ecological Profiles. In: Field Geobotany. Volume 3. Nauka, Leningrad-Moscow, 9–35 p.

Acta Biologica Sibirica is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.

Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.

ABS allows authors to deposit manuscripts (currently under review or those for intended submission to ABS) in non-commercial, pre-print servers such as ArXiv.

Authors who publish with this journal agree to the following terms:

 

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Downloads

Metrics

PDF views
99
Dec 19 '22Dec 22 '22Dec 25 '22Dec 28 '22Dec 31 '22Jan 01 '23Jan 04 '23Jan 07 '23Jan 10 '23Jan 13 '234.0
| |
Other format views
1