Аннотация
The Eurasian perch Perca fluviatilis (Linnaeus, 1758) is a common species of fish in northern ecosystems. The species demonstrates high phenotypic diversity when it inhabits various types of water bodies. Here, we investigate whether there is a relationship between the genetic variability and phenotypic diversity in natural perch populations. Perca fluviatilis samples (n = 218) were collected from seven localities in the Ob-Irtysh river basin in western Siberia, Russia. We used color morphs and standard morphometric approach to study phenotypic diversity, allozyme and ISSR-PCR markers to study the genetic variability of the perch. In total, 19 types of perch colouration were found. The number of color morphs varied from 4 to 16 in different reservoirs. The sets of colour morphs and prevailing coloration types, as well as some morphometric characteristics, were significantly different in all studied populations. Low allozyme variability was identified in the perch. The average observed and expected allozyme heterozygosity was 0.003 and 0.056, respectively; 13% of the loci were polymorphic. The genetic diversity (h) of the markers (ISSR) was 0.31; from 53% to 96% of the bands were polymorphic. Genetic differentiation in the perch was high, especially in allozyme loci. The FST and GST values were 0.39 and 0.085 for allozyme and ISSR markers, respectively. The genetic variability indices of the perch did not correlate with phenotypic diversity. Our results suggest that the use of different phenotypic or genetic markers can provide extremely different information on the level of variability in the population.
Литература
Akin S, Sahin C, Verep B, Turan D, Gözler AM, Bozkur A, Çelik K, Çetin E, Aracı A, Sargın Đ (2011) Feeding habits of introduced European perch (Perca fluviatilis) in an impounded large river system in Turkey. African Journal of Agricultural Research 6 (18): 4293–4307. https://doi.org/10.5897/AJAR11.397
Bartels P, Hirsch PE, Svanback R, Eklov P (2012) Water transparency drives intra-population divergence in Eurasian perch (Perca fluviatilis). Plos One 7 (8): e43641. https://doi.org/10.1371/journal.pone.0043641
Baktoft H, Jacobsen L, Skov C, Koed A, Jepsen N, Berg S, Aarestrup K, Svendsen J (2016) Phenotypic variation in metabolism and morphology correlating with animal swimming activity in the wild: relevance for the OCLTT (oxygen- and capacity-limitation of thermal tolerance), allocation and performance models. Conservation Physiology 4: cov055. https://doi.org/10.1093/conphys/cov055
Behrmann-Godel J, Gerlach G, Eckmann R (2004) Postglacial colonization shows evidence for sympatric population splitting of Eurasian perch (Perca fluviatilis L.) in Lake Constance. Molecular Ecology 13 (2): 491–497. https://doi.org/10.1046/j.1365-294X.2003.02082.x
Jain BP, Goswami SK, Pandey S (2021) Chapter 8 – Nucleic Acid. In: Jain BP, Goswami SK, Pandey S (Eds) Protocols in Biochemistry and Clinical Biochemistry. Academic Press, 69–100. https://doi.org/10.1016/B978-0-12-822007-8.00010-6
Ben Khadher S, Fontaine P, Milla S, Agnèse J-F, Teletchea F (2016) Genetic characterization and relatedness of wild and farmed Eurasian perch (Perca fluviatilis): possible implications for aquaculture practices. Aquaculture Reports 3: 136–146. https://doi.org/10.1016/j.aqrep.2015.12.003
Closs GP, Ludgate B, Goldsmith RJ (2001) Controlling European perch (Perca fluviatilis): lessons from an experimental removal. In: Managing invasive freshwater fish in New Zealand. Proceedings of a workshop hosted by department of conservation, Hamilton, 37–48. https://www.researchgate.net/publication/253494712_Controlling_European_perch_Perca_fluviatilis_lessons_from_an_experimental_removal
Ericson G, Liewenborg B, Lindesjöö E, Näf C, Balk L (1999) DNA adducts in perch (Perca fluviatilis) from a creosote contaminated site in the River Ångermanälven, Sweden. Aquatic Toxicology 45 (2&3): 181–193. https://doi.org/10.1016/S0166-445X(98)00100-3
Faulks L, Svanback R, Eklov P, Ostman O (2015) Genetic and morphological divergence along the littoral-pelagic axis in two common and sympatric fishes: perch, Perca fluviatilis (Percidae) and roach, Rutilus rutilus (Cyprinidae). Biological Journal of the Linnean Society 114 (4): 929–940. https://doi.org/10.1111/bij.12452
Fokina O, Grauda D, Rashal I (2015) Genetic diversity of two perch Perca fluviatilis populations of the Latgale region. In: Environment. Technology. Resources. Vol. II. Proceedings of the 10th International Scientific and Practical Conference, Rezekne, Latvia, Rezekne Higher Education Institution (Rēzeknes Augstskola), 96–98. http://dx.doi.org/10.17770/etr2015vol2.280
Georgieva Е, Yancheva V, Velcheva I, Becheva M, Stoyanova S (2015) Histological alterations under metal exposure in gills of European perch (Perca fluviatilis L.) from Topolnitsa Reservoir (Bulgaria). Archives of Biological Sciences 67 (2): 729–737. https://doi.org/10.2298/ABS141020034G
Gerlach G, Schardt U, Eckmann R, Meyer A (2001) Kin-structured subpopulations in Eurasian perch (Perca fluviatilis L.). Heredity 86: 213–221. https://doi.org/10.1046/j.1365-2540.2001.00825.x
Gyllensten U, Ryman N, Stahl G (1987) Monomorphism of allozymes in perch (Perca fluviatilis L.). Hereditas 102: 57–61. https://doi.org/10.1111/j.1601-5223.1985.tb00465.x
Hanel L (1990) The variability of the coloration in the perch (Perca fluviatilis, Pisces, Perciformes) from the riverine lake Slapy (Central Bohemia). Acta Societatis Zoologicae Bohemoslovacae 54: 161–163.
Heldstab H, Katoh M (1995) Low genetic variation in perch (Perca fluviatilis L.) from three major European drainage systems in Switzerland. Aquatic Sciences 57 (1): 14–19. https://doi.org/10.1007/BF00878023
Heynen M, Hellstrom G, Magnhagen C, Borcherding J (2010) Does morphological variation between young-of-the-year perch from two Swedish lakes depend on genetic differences? Ecology of Freshwater Fish 19: 163–169. https://doi.org/10.1111/j.1600-0633.2009.00400.x
Hopper GW, Morehouse RL, Tobler M (2017) Body shape variation in two species of darters (Etheostoma, Percidae) and its relation to the environment. Ecology of Freshwater Fish 26: 4–18. https://doi.org/10.1111/eff.12245
Kekalainen J, Kahkonen J, Kiviniemi V, Huuskonen H (2010) Morphological variation of perch Perca fluviatilis in humic lakes: the effect of predator density, competition and prey abundance. Journal of Fish Biology 76: 787–799. https://doi.org/10.1111/j.1095-8649.2009.02475.x
Leino JR, Mensinger AF (2017) Interspecific competition between the round goby, Neogobius melanostomus, and the logperch, Percina caprodes, in the Duluth-Superior Harbour. Ecology of Freshwater Fish 26: 34–41. https://doi.org/10.1111/eff.12247
Lucentini L, Lorenzoni M, Panara F, Mearelli M (2002) Effects of short- and long-term thermal stress in perch (Perca fluviatilis) determined through fluctuating asymmetry and HSP70 expression. Italian Journal of Zoology 69 (1): 13–17. https://doi.org/10.1080/11250000209356432
Maurer HR (1968) Disk-Elektrophorese: Theorie und Praxis der diskontinuierlichen Polyacrylamidgel Elektrophorese. De Gruyter and Co., Berlin, 221 pp.
Nesbo CL, Mohammed OA, Jakobsen KS (1998a) Heteroplasmy, length and sequence variation in the mtDNA control regions of three percid fish species (Perca fluviatilis, Acerina cernua, Stizostedion lucioperca). Genetics 148: 1907–1919. https://doi.org/10.1093/genetics/148.4.1907
Nesbo CL, Mohammed OA, Jakobsen KS (1998b) Genetic differentiation among stationary and anadromous perch (Perca ftuviatilis) in the Baltic Sea. Hereditas 129: 241–249. https://doi.org/10.1111/j.1601-5223.1998.00241.x
Nesbo CL, Fossheim T, Vollestad LA, Jakobsen KS (1999) Genetic divergence and phylogeographic relationships among European perch (Perca fluviatilis) populations reflect glacial refugia and postglacial colonization. Molecular Ecology 8: 1387–1404. https://doi.org/10.1046/j.1365-294x.1999.00699.x
Nkongolo KK, Gervais S, Michael P, Zhou Y (2014) Comparative analysis of Inter Simple Sequence Repeats and Simple Sequence Repeats markers: genetic analysis of Deschampsia cespitosa populations growing in metal contaminated regions in Canada. American Journal of Biochemistry and Biotechnology 10: 69-80. https://doi.org/10.3844/ajbbsp.2014.69.80
Olsson J, Svanback R, Eklov P (2007) Effects of resource level and habitat type on behavioral and morphological plasticity in Eurasian perch. Oecologia 152 (1): 48–56. https://doi.org/10.1007/s00442-006-0588-8
Pimakhin A (2012) Color variability of Eurasian perch (Perca fluviatilis L.): a review. In: Proceedings in ARSA – Advanced Research in Scientific Areas, 1, 1563–1569. https://www.semanticscholar.org/paper/Color-variability-of-Eurasian-perch-(Perca-L.)%3A-a-Pimakhin/19273aca6f0e8a82319c0966422da82285e0ef75
Pradeep AR, Jingade AH, Urs RS (2007) Molecular markers for biomass traits: association, interaction and genetic divergence in silkworm Bombyx mori. Biomarker Insights 2: 197–217. https://doi.org/10.4137/BMI.S0
Pravdin IF (1966) Guide to the study of fish. Food industry, Moscow, 146 pp.
Richardson BJ (1986) Allozyme electrophoresis. A handbook for animal systematics and population studies. Academic Press, London, 410 pp.
Roch S, Behrmann-Godel J, Brinker A (2015) Genetically distinct colour morphs of European perch Perca fluviatilis in Lake Constance differ in susceptibility to macroparasites. Journal of Fish Biology 86 (2): 854–863. https://doi.org/10.1111/jfb.12608
Rowinski PK, Mateos-Gonzalez F, Sandblom E, Jutfelt F, Ekstrom A, Sundstrom LF (2015) Warming alters the body shape of European perch Perca fluviatilis. Journal of Fish Biology 87 (5): 1234–1247. https://doi.org/10.1111/jfb.12785
Svanback R, Eklov P (2004) Morphology in perch affects habitat specific feeding efficiency. Functional Ecology 18: 503–510. https://doi.org/10.1111/j.0269-8463.2004.00858.x
Watt WB (1994) Allozymes in Evolutionary Genetics: Self-Imposed Burden or Extraordinary Tool? Genetics 136: 11–16. https://doi.org/10.1093/genetics/136.1.11
Yang XX, Wang CH, Wang J, Ma YQ, Yin JG, Wu HX (2009) Isolation and characterization of 12 polymorphic microsatellite loci in Eurasian perch (Perca fluviatilus L.). Conservation Genetics Resources 1: 229. https://doi.org/10.1007/s12686-009-9056-1
Yeh FC, Yang R, Boyle T (1999) POPGENE. Version 1.31. Univ. Alberta and Centre Int. Forestry Res. Retrieved from http://www.ualberta.ca/~fyeh/popgene_download.html
Авторы, публикующиеся в данном журнале, соглашаются со следующими условиями:
a. Авторы сохраняют за собой права на авторство своей работы и предоставляют журналу право первой публикации этой работы с правом после публикации распространять работу на условиях лицензии Creative Commons Attribution License, которая позволяет другим лицам свободно распространять опубликованную работу с обязательной ссылокой на авторов оригинальной работы и оригинальную публикацию в этом журнале.
b. Авторы сохраняют право заключать отдельные договора на неэксклюзивное распространение работы в том виде, в котором она была опубликована этим журналом (например, размещать работу в электронном архиве учреждения или публиковать в составе монографии), с условием сохраниения ссылки на оригинальную публикацию в этом журнале. с. Политика журнала разрешает и поощряет размещение авторами в сети Интернет (например в институтском хранилище или на персональном сайте) рукописи работы как до ее подачи в редакцию, так и во время ее редакционной обработки, так как это способствует продуктивной научной дискуссии и положительно сказывается на оперативности и динамике цитирования статьи