Implementation of artificial intellect for bird pest species detection and monitoring
PDF (English)
XML (English)

Как цитировать

Shapetko, E. V., Belozerskikh, V. V., & Siokhin, V. D. (2024). Implementation of artificial intellect for bird pest species detection and monitoring. Acta Biologica Sibirica, 10, 1033–1046. https://doi.org/10.5281/zenodo.13831321

Аннотация

This study aimed to develop a real-time method for detecting and selecting birds in video images using artificial intelligence. The objectives included creating a reliable method for isolating bird signals against varying terrain backgrounds using neural networks, estimating bird numbers in frames through AI-driven threshold techniques, and proposing a solution for managing pest bird populations by analyzing video data to control electronic deterrents. Throughout the research, we identified the bird species present on the premises of brewery across different seasons, compiled an annotated species list, and established a database of granary birds. Leveraging the YOLO architecture based on artificial intelligence, we developed a program for bird detection in low-resolution, low-quality images. The system underwent laboratory and field testing to validate its effectiveness.

https://doi.org/10.5281/zenodo.13831321
PDF (English)
XML (English)

Литература

Bennett GW, Owens JM, Corrigan RM (1989) Pigeon control. In: Truman’s scientific guide to pest control operations. Purdue Univercity. Edgell Commun. Duluth, Minnesota, 333–336.

Berge AJ, Delwiche MJ, Gorenzel WP, Salmon TP (2007) Bird control in vineyards using alarm and distress calls. American Journal of Enology and Viticulture 58(1): 135–143. https://doi.org/10.5344/ajev.2007.58.1.135

Bhusal S, Karkee M, Bhattarai U, Majeed Y, Zhang Q (2022) Automated execution of a pest bird deterrence system using a programmable unmanned aerial vehicle (UAV). Computers and Electronics in Agriculture 198: 106972. https://doi.org/10.1016/j.compag.2022.106972

Bhusal S, Bhattarai U, Karkee M (2019) Improving pest bird detection in a vineyard environment using super-resolution and deep learning. IFAC-PapersOnLine 52(30): 18–23. https://doi.org/10.1016/j.ifacol.2019.12.483

Blanton KM, Constantin BU, Williams GL (1992) Efficacy and methodology of urban pigeon control with DRC–1339. Proceedings of the Eastern Wildlife Damage Control Conference 5: 58–62.

Chen H, He Zh, Shi B, Zhong T (2019) Research on Recognition Method of Electrical Components Based on YOLO V3. IEEE, Special section on artificial intelligence technologies for electric power systems 7: 157818–157829. https://doi.org/10.1109/ACCESS.2019.2950053

Corrigan RM (1989) A guide to managing pigeons and sparrows. PestControlTech 17(1): 38–50.

Dellamano F (2006) Controlling birds with netting: blueberries, cherries and grapes. New York Fruit Quarterly 14(2): 3–5.

Dharaniya R, Preetha M, Yashmi S (2022) Bird species identification using convolutional neural network. In: Advances in parallel computing algorithms, tools and paradigms 41: 380–386. https://doi.org/10.3233/APC220053

Enaleev IR (2012) The method of determining the index of ornithological attractiveness of economic objects. RUDN Journal of Ecology and Life Safety 1: 5–9. [In Russian]

Enaleev IR, Arinina AV (2012) The moment of critical fear in the defensive behavior of birds. RUDN Journal of Ecology and Life Safety 3: 5–9. [In Russian]

Fukuda Y, Frampton CM, Hickling GJ (2008) Evaluation of two visual birdscarers, the Peaceful Pyramid® and an eye-spot balloon, in two vineyards. New Zealand Journal of Zoology 35(3): 217–224. https://doi.org/10.1080/03014220809510117

Gebhardt K, Anderson AM, Kirkpatrick K, Shwiff SW (2011) A review and synthesis of bird and rodent damage to select California Crops. Crop Protection 30(9): 1109–1116. https://doi.org/10.1016/j.cropro.2011.05.015

Gilkeson LA, Adams RW (2000) Integrated pest management manual for landscape pests in British Columbia. British Columbia Ministry of Environment, Lands and Parks; Pollution Prevention and Remediation Branch, Vancouver, British Columbia, 130 pp.

Grabovsky VI (2004) Protection against birds in the pest control program. PET-Info 1(49): 42–46. [In Russian]

Harris RE, Davis RA (1998) Evaluation of the efficacy of products and techniques for airport bird control. LGL Limited environmental research associates. Aerodrome Safety Branch Transport Canada, Ottawa, Ontario, 210 pp.

Höchst J, Bellafhir H, Lampe PM, Mühling M, Schneider D, Lindner K, Schabo D, Farwig N, Freisleben B (2022) Bird@Edge: bird species recognition at the edge. Conference on Networked Systems (NETYS 2022). Networked Systems: 69–86. https://doi.org/10.1007/978-3-031-17436-0_6

Ilyichev VD, Silaeva OL, Zolotarev SS (2007) Protection of airplanes and other objects from birds. KMK, Moscow, 320 pp. [In Russian]

Jakaria A, Pardede HF (2022) Comparison of classification of birds using lightweight deep convolutional neural networks. Jurnal Elektronika dan Telekomunikasi 22(2): 87. https://doi.org/10.55981/jet.503

Jo J, Park J, Han J, Lee M, Smith A (2019) Dynamic bird detection using image processing and neural network. VII International Conference on Robot Intelligence Technology and Applications (RiTA): 210–214. https://doi.org/10.1109/RITAPP.2019.8932891

Linz GM, Homan HJ, Slowik AA, Penry LB (2006) Evaluation of registered pesticides as repellents for reducing blackbird (Icteridae) damage to sunflower. Crop Protection 25: 842–847. https://doi.org/10.1016/j.cropro.2005.11.006

Marin F, Marin M (2019) Automatic identification of flying bird species using computer vision technique for ecological data analysis. Multimedia Systems 42: 46–49. https://doi.org/10.35219/mms.2019.4.08

McLennan JA, Langham NPE, Porter RER (1995) Deterrent effect of eye–spot balls on birds. New Zealand Journal of Crop and Horticultural Science 23: 139–144. https://doi.org/10.1080/01140671.1995.9513880

Nakamura K (1997) Estimation of effective area of bird scarers. Journal of Wildlife Management 61(3): 925–934. https://doi.org/10.2307/3802202

Niemi J, Tanttu J (2018) Deep learning case study for automatic bird identification. Applied Sciences 8(11): 2089. https://doi.org/10.3390/APP8112089

Niemi J, Tanttu JT (2020) Deep Learning Case Study on Imbalanced Training Data for Automatic Bird Identification. In: Pedrycz W, Chen SM (Eds) Deep Learning: Algorithms and Applications. Studies in Computational Intelligence 865: 231–262. https://doi.org/10.1007/978-3-030-31760-7_8

Norris RF, Caswell-Chen E, Kogan M (2003) Concepts in integrated pest management. 1st ed. Prentice Hall, Upper Saddle River, New Jersey, 586 pp.

Patil D, Bodhe R, Pawar R, Doshi T, Vasekar V (2022) Visual and Acoustic Identification of Bird Species. International Research Journal of Engineering and Technology 9(5): 3504–3507.

Porter RER, Rudge MR, McLennan JA (1994) Birds and small mammals: a pest control manual. ManaaM-Whenua Press, Lincoln, New Zealand, 88 pp.

Raj S, Garyali S, Kumar S, Shidnal S (2020) Image based bird species identification using convolutional neural network. International Journal of Engineering Research & Technology (IJERT) 9(06): 356–351. https://doi.org/10.17577/IJERTV9IS060279

Redmon J, Divvala S, Girshick R, Farhadi A (2016) You Only Look Once: Unified, Real-Time Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 779–788. https://doi.org/10.1109/CVPR.2016.91

Rude J, Meilke K (2004) Developing policy relevant agrifood models. Journal of Agricultural and Applied Economics 36(2): 369–382. https://doi.org/10.1017/S1074070800026651

Schiano F, Natter D, Zambrano D, Floreano D (2022) Autonomous detection and deterrence of pigeons on buildings by drones. IEEE Access 10: 1745–1755. https://doi.org/10.1109/ACCESS.2021.3137031

Simon G (2008) A short overview of bird control in sweet and sour cherry orchards – Possibilities of protection of bird damage and its effectiveness. International Journal of Horticultural Science 14(1-2): 107–111. https://doi.org/10.31421/IJHS/14/1-2./792

Steensma KMM (2008) Advances in bird deterrent methods for agricultural areas of south-west British Columbia and northwest Washington. Invited presentation, WSU Western Washington Small Fruit Workshop. Dec. 16, Lynden, Washington: 43–56.

Takeki A, Trinh T, Yoshihashi R, Kawakami R, Iida M, Naemura T (2016) Combining deep features for object detection at various scales: finding small birds in landscape images. IPSJ Transactions on Computer Vision and Applications 8: 1–7. https://doi.org/10.1186/s41074-016-0006-z

Takeki A, Trinh T, Yoshihashi R, Kawakami R, Iida M, Naemura T (2016) Detection of small birds in large images by combining a deep detector with semantic segmentation. 2016 IEEE International Conference on Image Processing (ICIP): 3977–3981. https://doi.org/10.1109/ICIP.2016.7533106

Teffo TR, Fuszonecker G, Katona K (2002) Testing pigeon control efficiency by different methods in urban industrial areas, Hungary. Biologia Futura 73: 87–93. https://doi.org/10.1007/s42977-021-00104-1

Tian S, Cao X, Li Y, Zhen X, Zhang B (2019) Glance and stare: trapping flying birds in aerial videos by adaptive deep spatio-temporal features. IEEE Transactions on Circuits and Systems for Video Technology 29: 2748–2759. https://doi.org/10.1109/TCSVT.2017.2764959

Uijlings J, van de Sande K, Gevers T, Smeulders A (2013) Selective search for object recognition. International Journal of Computer Vision 104: 154–171. https://doi.org/10.1007/s11263-013-0620-5

Wang Q, Rasmussen C, Song C (2016) Fast, deep detection and tracking of birds and nests. In: Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science 10072: 146–155. http://doi.org/10.1007/978-3-319-50835-1_14

Werner SJ, Homan HJ, Avery ML (2005) Evaluation of Bird Shield™ as a blackbird repellent in ripening rice and sunflower fields. Wildlife Society Bulletin 33: 251–257. https://doi.org/10.2193/0091-7648(2005)33[251:EOBSAA]2.0.CO;2

Zaloznykh DV (2007) Some ethological aspects of the use of birds of prey in providing ornithological safety of aircraft flights. Bulletin of Nizhny Novgorod University named after N.I. Lobachevsky 2: 127–129. [In Russian]

Zvonov BM (2010) Ornithological safety. Ontoprint, Moscow, 65pp. [In Russian]

Wu X, Yuan P, Peng Q, Ngo C, He J (2016) Detection of bird nests in overhead catenary system images for high-speed rail. Pattern Recognition 51: 242–254.

Авторы, публикующиеся в данном журнале, соглашаются со следующими условиями:

a. Авторы сохраняют за собой права на авторство своей работы и предоставляют журналу право первой публикации этой работы с правом после публикации распространять работу на условиях лицензии Creative Commons Attribution License, которая позволяет другим лицам свободно распространять опубликованную работу с обязательной ссылокой на авторов оригинальной работы и оригинальную публикацию в этом журнале.

b. Авторы сохраняют право заключать отдельные договора на неэксклюзивное распространение работы в том виде, в котором она была опубликована этим журналом (например, размещать работу в электронном архиве учреждения или публиковать в составе монографии), с условием сохраниения ссылки на оригинальную публикацию в этом журнале. с. Политика журнала разрешает и поощряет размещение авторами в сети Интернет (например в институтском хранилище или на персональном сайте) рукописи работы как до ее подачи в редакцию, так и во время ее редакционной обработки, так как это способствует продуктивной научной дискуссии и положительно сказывается на оперативности и динамике цитирования статьи 

Скачивания

Данные скачивания пока недоступны.

Metrics

Загрузка метрик ...