First results of the study of entomopathogenic microflora Cydia pomonella (Linnaeus, 1758) in apple orchards of Uzbekistan
PDF (English)

Как цитировать

Akhmedova, Z. Y., Zukhritdinova, N. Y., Kimyonazarov, S. Q., & Khashimova, M. K. (2024). First results of the study of entomopathogenic microflora Cydia pomonella (Linnaeus, 1758) in apple orchards of Uzbekistan. Acta Biologica Sibirica, 10, 1293–1304. https://doi.org/10.5281/zenodo.14029828

Аннотация

In this study, Cydia pomonella (Linnaeus, 1758) entomopathogenic microorganisms were isolated from damaged insect carcasses in the territory of Tashkent and Fergana regions of Uzbekistan. Insect specimens were selected using the trapping belt method and 30 strains of micromycetes were isolated from these specimens. In morphological and cultural studies, entomopathogenic micromycetes in dead and infected individuals of C. romonella belong to the genera Penicillium, Aspergillus, Fusarium, Alternaria. The results obtained showed that micromycetes of the species Penicillium chrysogenum Thom, Alternaria alternata (Fr.) Keissl., Fusarium solani (Mart.) Sacc., Fusarium oxysporum Schltdl., Aspergillus fumigatus Fresen., Aspergillus niger Tiegh., Aspergillus terreus Thom were present both in the suspension after washing off the insects and in the homogenized insects.

https://doi.org/10.5281/zenodo.14029828
PDF (English)

Литература

Akhmedova Z, Kholmatov B, Lebedeva N, Rustamov K, Yakhyoev J, Kimsanbayev K (2021) Importance of fungus in feeding termites with sunflower plants. In: E3S Web of Conferences 244: 02042. EDP Sciences. https://doi.org/10.1051/e3sconf/202124402042

Almeida OAC, de Araujo NO, Dias BHS, de Sant’Anna Freitas C, Coerini LF, Ryu CM, de Castro Oliveira JV (2023) The power of the smallest: The inhibitory activity of microbial volatile organic compounds against phytopathogens. Frontiers in microbiology 13: 951130. https://doi.org/10.3389/fmicb.2022.951130

Balaško MK, Bažok R, Mikac KM, Benítez HA, Suazo MJ, Viana JPG, Lemic D, Živkovi´c IP (2022) Population genetic structure and geometric morphology of codling moth populations from different management systems. Agronomy 12(6): 1278. https://doi.org/10.3390/agronomy12061278

Berestetskiy A, Hu Q (2021) The chemical ecology approach to reveal fungal metabolites for arthropod pest management. Microorganisms 9(7): 1379. https://doi.org/10.3390/microorganisms9071379

Bilay VI (1982) Method in experimental mycology. Handbook. Kiev, 552 pp. [In Russian]

Devi TB, Raina V, Rajashekar Y (2022) A novel biofumigant from Tithonia diversifolia (Hemsl.) A. Gray for control of stored grain insect pests. Pesticide Biochemistry and Physiology 184: 105116. https://doi.org/10.1016/j.pestbp.2022.105116

Jiang D, Chen S, Hao M, Fu J, Ding F (2018) Mapping the potential global codling moth (Cydia pomonella L.) distribution based on a machine learning method. Scientific reports 8 (1): 13093. https://www.nature.com/articles/s41598-018-31478-3

Kaushik N, Díaz CE, Chhipa H, Julio LF, Andrés MF, González-Coloma A (2020) Chemical composition of an aphid antifeedant extract from an endophytic fungus, Trichoderma sp. EFI671. Microorganisms 8(3): 420. https://doi.org/10.3390/microorganisms8030420

Lacey LA, Unruh TR (2005) Biological control of codling moth (Cydia pomonella, Lepidoptera: Tortricidae) and its role in integrated pest management, with emphasis on entomopathogens. Vedalia 12(1): 33–60.

Lee JH, Anderson AJ, Kim YC (2022) Root-associated bacteria are biocontrol agents for multiple plant pests. Microorganisms 10(5): 1053. https://doi.org/10.3390/microorganisms10051053

Litvinov MA (1967) Key to microscopic soil fungi. Nauka, Leningrad, 311pp. [In Russian]

Liu C, Zhuang X, Yu Z, Wang Z, Wang Y, Guo X, Hiang V, Huang S (2019) Community structures and antifungal activity of root-associated endophytic actinobacteria of healthy and diseased soybean. Microorganisms 7(8): 243. https://doi.org/10.3390%2Fmicroorganisms7080243

Medvedev GS (1978) Identification of insects of the European part of the USSR. Moscow, Leningrad, 710 pp. [In Russian]

Mereghetti V, Chouaia B, Montagna M (2017) New insights into the microbiota of moth pests. International Journal of Molecular Sciences 18(11): 2450. https://doi.org/10.3390%2Fijms18112450

Moreno-Gavíra A, Diánez F, Sánchez-Montesinos B, Santos M (2021) Biocontrol effects of Paecilomyces variotii against fungal plant diseases. Journal of Fungi 7(6): 415. https://doi.org/10.3390%2Fjof7060415

Moreno-Gavíra A, Huertas V, Diánez F, Sánchez-Montesinos B, Santos M (2020) Paecilomyces and its importance in the biological control of agricultural pests and diseases. Plants 9(12): 1746. https://doi.org/10.3390%2Fplants9121746

Nicoletti R, Andolfi A, Becchimanzi A, Salvatore MM (2023) Anti-insect properties of Penicillium secondary metabolites. Microorganisms 11(5):1302. https://doi.org/10.3390/microorganisms11051302

Nicoletti R, Russo E, Becchimanzi A (2024) Cladosporium Insect relationships. Journal of Fungi 10(1): 78. https://doi.org/10.3390/jof10010078

Picciotti U, Dalbon AV, Ciancio A, Colagiero M, Cozzi G, De Bellis L, Finetti-Sialer MM, Greko D, Ippolito A, Lahbib N, Logrieko AF, Lopes-Lorka LV, Lopez-Moya F, Andrea Luvisi A, Mincuzzi A, Molina-Asevedo XP, Pazzani K, Marko Skortichini M, Scrascia M, Valenzano D, Garganese F, Porcelli F (2023) “Ectomosphere”: Insects and microorganism interactions. Microorganisms 11(2): 440. https://doi.org/10.3390/microorganisms11020440

Pidoplichko NM, Milko AA (1971) Atlas of Mucorales Fungi. Naukova dumka, Kiev, 117 pp. [In Russian]

Pronk LJ, Bakker PA, Keel C, Maurhofer M, Flury P (2022) The secret life of plant-beneficial rhizosphere bacteria: insects as alternative hosts. Environmental Microbiology 24(8): 3273–3289. https://doi.org/10.1111/1462-2920.15968

Rakhmonova MK (2018) Bioecology of Carpocapsa pomonella and development of integrated control methods for managing its quantity. Abstract of a PhD dissertation (Agriculture science). Tashkent, 22 pp. [In Uzbek]

Razinger J, Praprotnik E, Schroers HJ (2020) Bioaugmentation of entomopathogenic fungi for sustainable Agriotes larvae (wireworms) management in maize. Frontiers in plant science 11: 535005. https://doi.org/10.3389/fpls.2020.535005

Reverchon F, García-Quiroz W, Guevara-Avendaño E, Solís-García IA, Ferrera-Rodríguez O, Lorea-Hernández F (2019) Antifungal potential of Lauraceae rhizobacteria from a tropical montane cloud forest against Fusarium spp. Brazilian Journal of Microbiology 50: 583–592. https://doi.org/10.1007/s42770-019-00094-2

Singh D, Son SY, Lee CH (2016) Perplexing metabolomes in fungal-insect trophic interactions: A Terra incognita of mycobiocontrol mechanisms. Frontiers in Microbiology 7: 1678. https://doi.org/10.3389/fmicb.2016.01678

Sokirko VP, Gorkovenko VS, Zazimko MI (2014) Phytopathogenic fungi (morphology and systematics): textbook. KSAU, Krasnodar, 178 pp. [In Russian]

Song LS, Huo J, Wan L, Pan L, Jiang N, Fu J, Wei Sh, He L (2023) Differences and biocontrol potential of haustorial endophytic fungi from Taxillus Chinensis on different host plants. BMC microbiology 23(1): 128. https://doi.org/10.1186/s12866-023-02878-x

Tepper YZ, Shilnikova VK, Pereverzeva GI (2004) Workshop on Microbiology, MSU Press, Moscow, 256 pp. [In Russian]

Turaeva BI, Soliev A, Eshboev F, Kamolov L, Azimova N, Karimov H, Zukhritdinova N, Khamidova KH (2020) The use of three fungal strains in producing of indole-3-acetic acid and gibberellic acid. Plant Cell Biotechnol and Molecular Biology 21: 32–43.

Turaeva BI, Soliev AB, Karimov HK, Azimova NS, Kutlieva GJ, Khamidova KM, Zuxritdinova NY (2021) Disease causing phytopathogenic micromycetes in citrus in Uzbekistan. Pakistan Journal of Phytopathology 33(02): 383–393. https://doi.org/10.33866/phytopathol.033.02.0724

Tzec-Interián JA, Desgarennes D, Carrión G, Monribot-Villanueva JL, Guerrero-Analco JA, Ferrera-Rodríguez O, Santos-Rodriguez DL, Liahut-Guin N, Caballero-Reyes GE, Ortiz-Castro R (2020) Characterization of plant growth-promoting bacteria associated with avocado trees (Persea americana Miller) and their potential use in the biocontrol of Scirtothrips perseae (avocado thrips). PLoS One 15(4): 12–15. https://doi.org/10.1371/journal.pone.0231215

Vu VH, Hong SI, Kim K (2007) Selection of entomopathogenic fungi for aphid control. Journal of Bioscience and Bioengineering 104(6): 498–505. https://doi.org/10.1263/jbb.104.498

Van F, Yin C, Tang R, Chen M, Wu Q, Huang C, Qian W, Rota-Stabelli O, Yang N, Vang Sh, Vang G, Chjan G, Guo J, Gu L, Chen L, Xing L, Xi Y, Liu F, Lin K, Guo M, Liu V, He K, Tian R, Jakkin-Joli E, Frank P, Siegvart M, Ometto L, Anfora J, Blaxter M, Meslin K, Nguyen P, Dalikova M, Marec F, Olivares J, Maugin S, Shen J, Liu J, Guo J, Luo J, Liu B, Fan V, Feng L, Chjao S, Peng X, Vang K, Liu L, Zhan X, Liu W, Shi G, Jiang Ch, Jin J, Sian S, Lu Sh, Ye M, Li M, Yang M, Xiong R, Valters JR, Li F (2019) A chromosomelevel genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nature Communications 10(1): 4237. https://doi.org/10.1038/s41467-019-12175-9

Wang D, Luo WZ, Zhang DD, Li R, Kong ZQ, Song J, Dai XF, Alkan N, Chen JY (2023) Insights into the Biocontrol Function of a Burkholderia gladioli Strain against Botrytis cinerea. Microbiology Spectrum 11(2): 5–22. https://doi.org/10.1128/spectrum.04805-22

Watts D, Palombo EA, Castillo JA, Zaferanloo B (2023) Endophytes in agriculture: potential to improve yields and tolerances of agricultural crops. Microorganisms 11(5): 1276. https://doi.org/10.3390%2Fmicroorganisms11051276

Xuan H, Gao P, Du B, Geng L, Wang K, Huang K, Chjan J, Huang T, Shu C (2022) Characterization of microorganisms from Protaetia brevitarsis larva frass. Microorganisms 10(2): 311. https://doi.org/10.3390/microorganisms10020311

Yan J, Liu H, Idrees A, Chen F, Lu H, Ouyang G, Meng X (2022) First record of aspergillus fijiensis as an entomopathogenic fungus against Asian Citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Journal of fungi 8(11): 1222. https://doi.org/10.3390/jof8111222

Zawadneak MAC, Pimentel IC, Robl D, Dalzoto P, Vicente V, Sosa-Gómez DR, Porsani M, Cuquel FL (2015) Paecilomyces niveus Stolk & Samson, 1971 (Ascomycota: Thermoascaceae) as a pathogen of Nasonovia ribisnigri (Mosley, 1841) (Hemiptera, Aphididae) in Brazil. Brazilian Journal of Biology 75: 158–162. https://doi.org/10.1590/1519-6984.08014

Авторы, публикующиеся в данном журнале, соглашаются со следующими условиями:

a. Авторы сохраняют за собой права на авторство своей работы и предоставляют журналу право первой публикации этой работы с правом после публикации распространять работу на условиях лицензии Creative Commons Attribution License, которая позволяет другим лицам свободно распространять опубликованную работу с обязательной ссылокой на авторов оригинальной работы и оригинальную публикацию в этом журнале.

b. Авторы сохраняют право заключать отдельные договора на неэксклюзивное распространение работы в том виде, в котором она была опубликована этим журналом (например, размещать работу в электронном архиве учреждения или публиковать в составе монографии), с условием сохраниения ссылки на оригинальную публикацию в этом журнале. с. Политика журнала разрешает и поощряет размещение авторами в сети Интернет (например в институтском хранилище или на персональном сайте) рукописи работы как до ее подачи в редакцию, так и во время ее редакционной обработки, так как это способствует продуктивной научной дискуссии и положительно сказывается на оперативности и динамике цитирования статьи 

Скачивания

Данные скачивания пока недоступны.

Metrics

Загрузка метрик ...