FUNCTIONAL MATERIALS FROM PAPER WASTES. II. CELLULOSE HYDROGELS WITH HIGH WATER RETEN-TION CAPACITY OBTAINED FROM SOLUTIONS OF WASTE PAPER IN DMAC/LiCl
UDC 677.014.82
Abstract
An efficient process for recycling paper and cardboard wastes via dissolution in N,N-dimethylacetamide/lithium chloride (DMAc/LiCl) system and regeneration from solutions to obtain hydrogels has been developed. Pretreatment of waste paper has been carried out by thermal defibrillation of waste paper in water and homogenization to obtain fibre samples. The dissolution of fibre materials has been performed in two ways varying the process temperature and the way the reagents have been introduced. Regeneration from solutions has been carried out by spontaneous gelation without the use of antisolvents, at room temperature and atmospheric pressure. As a result, hydrogels were obtained which differed in color and transparency depending on feedstock. The physico-chemical properties of the hydrogels have been characterized. It has been shown that they were stable in an aqueous medium, capable of retaining a significant amount of water (over 4000 wt.%), and were porous systems which has been confirmed by scanning electron microscopy. According to a wide-angle X-ray scattering, the crystallographic structure of the pristine waste paper samples corresponded to a structural modification of cellulose I. Regenerated samples as freeze-dried hydrogels had the structure of cellulose II. A functional and an elemental composition studied with FTIR spectroscopy and an energy-dispersive X-ray microanalysis characterized these hydrogels as the cellulose samples containing small amount of inorganic impurities. The resulting hydrogels had a system of through pores of different sizes, and this predetermined their use as adsorbents and active matrices.
Downloads
Metrics
References
Volkova A.V. Rynok utilizatsii otkhodov. Doklad NIU VShE. [Waste disposal market. HSE report]. Moscow, 2018, 87 p. (in Russ.).
Ünlü C.H. Carbohydr. Polym., 2013, vol. 97, no. 1, p. 159. DOI: 10.1016/j.carbpol.2013.04.039.
Hospodarova V., Stevulova N., Briancin J., Kostelanska K. Buildings, 2018, vol. 8, no. 43, p. 1. DOI: 10.3390/buildings8030043.
Pang S.C., Chin S.F., Yih V. Adv. Mat. Lett., 2011, vol. 2, no. 2, p. 118. DOI: 10.5185/amlett.2011.1203.
Campano C., Miranda R., Merayo N., Negro C., Blanco A. Carbohydr. Polym., 2017, vol. 173, p. 489. DOI: 10.1016/j.carbpol.2017.05.073.
Tang Y., Shen X., Zhang J., Guo D., Kong F., Zhang N. Carbohyd. Polym., 2015, vol. 125, p. 360. DOI: 10.1016/j.carbpol.2015.02.063.
Danial W.H., Majid Z.A., Muhid M.N.M., Triwahyono S., Bakar M.B., Ramli Z. Carbohydr. Polym., 2015, vol. 118, p. 165. DOI: 10.1016/j.carbpol.2014.10.072.
Nguyen S.T., Feng J., Kai Ng Sh., Wong J.P.W., Tan V.B.C., Duong H.M. Colloids and Surfaces, Ser. A., 2014, vol. 445, p. 128. DOI: 10.1016/j.colsurfa.2014.01.015.
Duong H.M., Le D.Kh., Thai Q.B., Luu Th.Ph., Do N.H. Thermal behaviour and applications of carbon-based na-nomaterials. Amsterdam: Elsevier, 2020, pp. 221–269. DOI: 10.1016/b978-0-12-817682-5.00009-x.
Cellulose aerogels from recycled waste: Reports. Climate technology centre & network, no. ational University of Sin-gapore, 2015.
Jin C., Han S., Li J., Sun Q. Carbohydr. Polym., 2015, vol. 123, no. 5, p. 150. DOI: 10.1016/j.carbpol.2015.01.056.
Fan P., Yuan Y., Ren J., Yuan B., He Q. et al. Carbohydr. Polym., 2017, vol. 162, p. 108. DOI: 10.1016/j.carbpol.2017.01.015.
Feng J.D., Nguyen S.T., Duong H.M. Adv. Mater. Res., 2014, vol. 936, p. 938. DOI: 10.4028/www.scientific.net/amr.936.938.
Zhang Sh., Zhang F., Jin L., Liu B., Mao Y., Ya L.J. Cellulose, 2019, vol. 26, p. 5177. DOI: 10.1007/s10570-019-02434-9.
Fridrihsone V., Zoldners J., Skute M., Grinfelds U., Filipova I. et al. Key Eng. Mater., 2019, vol. 800, p. 138. DOI: 10.4028/www.scientific.net/kem.800.138.
Kotelnikova N.E., Bykhovtsova Yu.V., Mikhailidi A.M., Saprykina N.N. Russian Journal of Bioorganic Chemistry, 2015, vol. 41, no. 7, p. 700. DOI: 10.1134/s1068162015070067.
Kotelnikova N.E., Mikhailidi A.M., Martakova Yu.V. Polymer Science, Ser. A, 2017, vol. 59, no. 1, p. 76. DOI: 10.1134/s0965545x17010084.
Patent 101649574B (CN). 2010.
Martakova Yu.V. Gidrogeli na osnove rastitel'nykh tsellyuloz i ikh kompozity s nanochastitsami serebra: Dis. … kand. khim. nauk. [Hydrogels based on plant celluloses and their composites with silver nanoparticles: Dis. ... Cand. chem. sciences]. Syktyvkar, 2018, 153 p. (in Russ.).
Karim Saurov Sh., Mikhailidi A., Svedstrom K., Kotelnikova N. Cellulose Chem. Technol., 2019, vol. 53, no. 9‒10, p. 885. DOI: 10.35812/cellulosechemtechnol.2019.53.86.
Scherrer P. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. Berlin, 1918, pp. 98–100.
Varepo L.G. Fundamental'nyye issledovaniya, 2007, no. 12-2, p. 279. (in Russ.).
Mikhailidi A., Karim Saurov Sh., Andersson S., Kotelnikova N. TAPPI J., 2018, vol. 17, no. 2, p. 81. DOI: 10.32964/tj17.02.81.
Segal L., Creely J.J., Martin Jr. A.E., Conrad C.M. Text. Res. J., 1959, vol. 29, no. 10, p. 786. DOI: 10.1177/004051755902901003.
Mansikkamäki P., Lahtinen M., Rissanen K. Cellulose, 2005, vol. 12, p. 233. DOI: 10.1007/s10570-004-3132-1.
Awadel-Karim S., Nazhad M.M., Paszner L. Holzforschung, 1999, vol. 53, no. 1, p. 1. DOI: 10.1515/hf.1999.001.
del Cerro D.R., Koso T.V., Kakko T., King A.W.T., Kilpeläinen I. Cellulose, 2020, vol. 27, p. 5545. DOI: 10.1007/s10570-020-03044-6.
Wittmar A.S.M., Koch D., Prymak O., Ulbricht M. ACS Omega, 2020, vol. 5, no. 42, p. 27314. DOI: 10.1021/acsomega.0c03632.
Beushev A.A., Skurydin Yu.G., Skurydina Ye.M., Beusheva O.S., Kon'shin V.V. Polzunovskiy vestnik, 2016, no. 2, p. 192. (in Russ.).
Konturri E. Lecture 2. CHEM-E2140 - Cellulose-Based Fibres. Aalto University. Finland, 2015.
Yan Ch.-F., Yu H.-Y., Yao J.-M. Cellulose, 2015, vol. 22, p. 3773. DOI: 10.1007/s10570-015-0761-5.
Ling Zh., Chen Sh., Zhang X., Takabe K., Xu F. Sci. Rep., 2017, vol. 7, 10230. DOI: 10.1038/s41598-017-09885-9.
Garside P., Wyeth P. Studies in Conservation, 2003, vol. 48, no. 4, p. 269. DOI: 10.1179/sic.2003.48.4.269.
Neto W.P.F., Putaux J.-L., Mariano M., Ogawa Y., Otaguro H., Pasquini D., Dufresne A. RSC Advances, 2016, vol. 6, no. 79, p. 76017. DOI: 10.1039/c6ra16295a.
Han J., Zhou Ch., French A.D., Han G., Wu Q. Carbohydr. Polym., 2013, vol. 94, p. 773. DOI: 10.1016/j.carbpol.2013.02.003.
Copyright (c) 2021 chemistry of plant raw material

This work is licensed under a Creative Commons Attribution 4.0 International License.

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.







