STUDY OF ISOTHERMS OF WATER VAPOR SORPTION FOR HYDROPHILIC POLYMERS

UDC 547.458+678.744:544.723

  • Michael Yacob Ioelovich Designer Energy Ltd Email: ioelovichm@gmail.com
Keywords: hydrophilic polymers, sorption of water vapors, sorption isotherms, models, universal equation, calculations

Abstract

Various models and equations of water vapor (WV) sorption for hydrophilic polymers were considered. However, these models often do not correspond to the sorption mechanism. This study is based on the thermodynamics in binary systems and the Van Krevelen method of polar group contributions in the sorption of WV. Moreover, it was shown that the mechanism of WV sorption by various hydrophilic polymers is the absorption of water molecules in the volume of amorphous domains of these polymers. As a result, a universal physicochemical equation was proposed allowing adequately to describe the sorption isotherms of WV by amorphous hydrophilic polymers knowing only the chemical formulas of repeating units of these polymers. To calcu-late the sorption isotherms for semicrystalline polymer samples, it is necessary to use an additional parameter, namely the degree of amorphicity (Y). The adequacy of the derived equation was verified for samples of cellulose and other natural polysaccharides, as well as for samples of synthetic hydrophilic polymers such as polyvinyl alcohol, polyamide-6, and polycaprolactone having various Y-values. The verification showed that the experimental isotherms are almost identical to the isotherms calculated by the universal equation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Michael Yacob Ioelovich, Designer Energy Ltd

Dr. in Chemistry, Professor

References

Sionkowska A. Progress in Polym. Sci., 2011, vol. 36, pp. 1254–1276. DOI: 10.1016/j.progpolymsci.2011.05.003.

Sazali N., Ibrahim H., Jamaludin A.S. et al. Mater. Sci. Eng., 2020, vol. 788, pp. 1–15. DOI: 10.1088/1757-899X/788/1/012047.

Schmidt B. Polymers, 2019, vol. 11, pp. 693–698. DOI: 10.3390/polym11040693.

Grunin Y.B., Grunin L.Y., Schiraya V.Y. et al. Biores. Bioprocess, 2020, vol. 7, pp. 1–11. DOI: 10.1186/s40643-020-00332-8.

Andrade R.D., Lemus R., Pérez C. Vitae, 2011, vol. 18, pp. 325–334.

Papkov S.P., Fainberg E.Z. Vzaimodeystviye tsellyulozy i tsellyuloznykh materialov s vodoy. [Interaction of cellulose and cellulosic materials with water]. Moscow, 1976, 232 p. (in Russ.).

Timmermann E.O. Colloid Surface, 2003, vol. 220, pp. 235–260. DOI: 10.1016/S0927-7757(03)00059-1.

Czepirsky L., Komarowska-Czepirska E., Szymonska J. Appl. Surface. Sci., 2002, vol. 196, pp. 150–153. DOI: 10.1016/S0169-4332(02)00050-8.

Brousse M.M., Linares R.A., Vergara M.L., Nieto A.B. RECyT, 2017, vol. 19, pp. 29–37.

Blahovec J., Yanniotis S. Food Bioprocess Technol., 2008, vol. 1, pp. 82–90. DOI: 10.1007/s11947-007-0012-3.

Roja J., Moren S., Lopez A. J. Pharm. Sci. Res., 2011, vol. 3, pp. 1302–1309.

Broudin M., Le Saux V., Le Gac Pierre-Yves L. et al. Polymer Testing, 2015, vol. 171, pp. 87–95. DOI: 10.1016/j.polymertesting.2015.02.004.

Hill C.A.S., Norton A., Newman G. J. Appl. Polym. Sci., 2009, vol. 112, pp. 1524–1537. DOI: 10.1002/app.29725.

Park G.S. Synthetic membranes: science, engineering and applications. Springer: Dordrecht, 1986, vol 181, pp. 57–107.

Bessadok A., Langevin D., Gouanvé F. et al. Carbohyd. Polym., 2009, vol. 76, pp. 74–85. DOI: 10.1016/j.carbpol.2008.09.033.

Chalykh A.E., Bardyshev I.I., Petrova T.F. Polymers, 2021, vol. 13, pp. 2644–2658. DOI: 10.3390/polym13162644.

Ostrovskii V.E., Tsurkova B.V. Thernrochim. Acta, 1998, vol. 316, pp. 111–122.

Caulfield D.F., Steffes R.A. TAPPI, 1989, vol. 52, pp. 1361–1367.

Paes S.S., Sun Sh., MacNaughtan W. et al. Cellulose, 2010, vol. 17, pp. 693–709. DOI: 10.1007/s10570-010-9425-7.

Parodi E. Structure properties relations for polyamide-6. Univ Press: Eindhoven, 2017, 118 p.

Prusov A.N., Prusova S.M., Radugin M.V., Zakharov A.G. Russ. J. Phys. Chem., 2014, vol. 88, pp. 813–818.

Ioelovich M. SITA, 2016, vol. 18, pp. 35–42.

Ioelovich M., Leykin A. Bioresources, 2011, vol. 6, pp. 178–195. DOI: 10.15376/biores.6.1.178-195.

Van Krevelen D.W., Nijenhuis K. Properties of Polymers: Correlations with chemical structure. Elsevier: Amsterdam, 2009, 1004 p.

Ioelovich M. Organic Polym. Mater. Res., 2021, vol. 3, pp. 12–23. DOI: 10.30564/opmr.v3i2.4181.

Published
2022-09-26
How to Cite
1. Ioelovich M. Y. STUDY OF ISOTHERMS OF WATER VAPOR SORPTION FOR HYDROPHILIC POLYMERS // chemistry of plant raw material, 2022. № 3. P. 91-98. URL: http://journal.asu.ru/cw/article/view/10989.
Section
Biopolymers of plants