THE STATE AND PROSPECTS OF IMPROVING THE METHODS OF OBTAINING AND USING BACTERIAL CEL-LULOSE (REVIEW)

UDC 676.15

  • Ekaterina Aleksandrovna Rogova Siberian State University of Science and Technology named after Academician M.F. Reshetnev Email: kat-rogo@yandex.ru
  • Yuri Davidovich Alashkevich Siberian State University of Science and Technology named after Academician M.F. Reshetnev Email: alashkevichud@sibsau.ru
  • Victor Anatolyevich Kozhukhov Siberian State University of Science and Technology named after Academician M.F. Reshetnev Email: vkozhukhov@mail.ru
  • Ilya Romanovich Lapin Siberian State University of Science and Technology named after Academician M.F. Reshetnev Email: ilya.lapin.99@list.ru
  • Evgeny Gennadievich Kiselyov Siberian Federal University; Institute of Biophysics SB RAS Email: evgeniygek@gmail.com
Keywords: bacterial cellulose, bioreactor, inoculate, cultivation conditions, application of bacterial cellulose

Abstract

Any material that we encounter in the world around us does not have such a widespread use as bacterial cellulose. This kind of unique material gained its popularity in the 20th century and became an excellent source for research. Its acquisition and practical application in various areas of our life activity is currently quite important. In addition, thanks to a wide range of studies aimed at the basics of its production, many promising areas of using by-products of the food industry as a source of energy for growth have been identified, which makes this material more environmentally friendly than its plant counterpart.

Despite its rich history of studying and obtaining bacterial cellulose, it is still considered to be not fully studied material. This makes it possible for researchers to identify new sources of energy for the growth of bacterial cellulose, to improve the quality and increase its quantity, both in the laboratory and on an industrial scale, as well as to look for more and more new areas of its application, where it would seem it has no place.

In the modern scientific world, bacterial cellulose is one of the promising sources of scientific research and further technological applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Ekaterina Aleksandrovna Rogova, Siberian State University of Science and Technology named after Academician M.F. Reshetnev

старший преподаватель

Yuri Davidovich Alashkevich, Siberian State University of Science and Technology named after Academician M.F. Reshetnev

доктор технических наук, профессор

Victor Anatolyevich Kozhukhov, Siberian State University of Science and Technology named after Academician M.F. Reshetnev

кандидат технических наук, доцент

Ilya Romanovich Lapin, Siberian State University of Science and Technology named after Academician M.F. Reshetnev

магистрант

Evgeny Gennadievich Kiselyov, Siberian Federal University; Institute of Biophysics SB RAS

кандидат технических наук, доцент

References

Aleshina L.A., Glazkova S.V., Lugovskaya L.A., Podoynikova M.V., Fofanov A.D., Silina Ye.V. Khimiya ras-titel'nogo syr'ya, 2001, no. 1, pp. 5–36. (in Russ.).

Mautner A. Polymer International, 2020, vol. 69, pp. 741–751.

Gregory D.A., Tripathi L., Fricker A.T.R., Asare E., Orlando I., Raghavendran V., Roy I. Materials Scince and Engi-neering R, 2021, vol. 145, pp. 159–186.

Florea M., Hagemann H., Santosa G. et al. Proceedings of the National Academy of Sciences, 2016, vol. 113 (24), pp. E3431–E3440. DOI: 10.1073/pnas.1522985113.

Tanpichai S., Witayakran S., Wootthikanokkhan J., Srimarut Y., Woraprayote W., Malila Y. International Journal of Biological Macromolecules, 2020, vol. 155, pр. 1510–1519.

Grunin L.Yu., Grunin Yu.B., Nikol'skaya Ye.A., Talantsev V.I. Vysokomolekulyarnyye soyedineniya. Seriya A, 2012, vol. 54, no. 3, pp. 397–405. (in Russ.).

Ioelovich M. Journal Scientific Israel- Technological Advantages, 2017, vol. 19, no. 4, pp. 37–44.

Fernandes I.A.A., Pedro A.C., Ribeiro V.R., Bortolini D.G., Ozaki M.S.C., Maciel G.M., Haminiuk C.W.I. Biological Macromolecules, 2020, vol. 164, pp. 2598–2611.

Gallegos A.M.A., Carrera S.H., Parra R., Keshavarz T., Iqbal H.M.N. BioResources, 2016, vol. 11, pp. 5641–5655.

Sukara E., Meliawati R. Jurnal Selulosa, 2014, vol. 4, no. 1, pp. 7–16.

Okiyama A., Motoki M., Yamanaka S. Food Hydrocoll., 1992, vol. 6, pp. 479–487.

Fan Mi Khan'. Biotekhnologiya bakterial'noy tsellyulozy s ispol'zovaniyem shtamma - produtsenta gluconaceto-bacter hansenii GH-1/2008: avtoref. diss. … kand. biol. nauk. [Biotechnology of bacterial cellulose using the producer strain of gluconaceto-bacter hansenii GH-1/2008: author. diss. … cand. biol. Sciences]. Moscow, 2013, 25 p. (in Russ.).

Ul-Islam M., Khan T., Khattak W.A., Park J.K. Cellulose, 2013, vol. 20, pp. 589–596.

Zhong C. Frontiers in Bioengineering and Biotechnology, 2020, vol. 8, 605374. DOI: 10.3389/fbioe.2020.605374.

Cacicedo M., Islan G.A., Leon I., Alvarez V.A. Colloids and surfaces B: Biointerfaces, 2018, vol. 170, pp. 596–608 DOI: 10.1016/j.colsurfb.2018.06.056.

Weyell P., Beekmann U., Kuepper C., Dederichs M., Thamm J., Fischer D., Kralisch D. Carbohydrate Polymers, 2018, vol. 207, pp. 1–10. DOI: 10.1016/j.carbpol.2018.11.061.

Bianchet R.T., Vieira Cubas A.L., Machado M.M., Siegel E.H. Biotechnology Reports, 2020, vol. 27.

Al' Dulaymi Salman Davud Salman. Samovosstanavlivayushchiyesya betony, modifitsirovannyye mikrobiologi-cheskoy dobavkoy: avtoref. diss. … kand. tekhn. nauk. [Self-healing concretes modified with a microbiological additive: Ph.D. diss. … cand. tech. Sciences]. Moscow, 2019, 28 p. (in Russ.).

Yerofeyev V.T., Al' Dulaymi Salman Davud Salman, Smirnov V.F. Transportnyye sooruzheniya, 2018, vol. 5, no. 4, pp. 1–13. (in Russ.).

Sancheza F., Sobolevb K. Construction and Building Materials, 2010, vol. 24, pp. 2060–2071.

Balea A., Fuente E., Blanco A., Negro C. Polymers, 2019, vol. 11, pp. 518–550.

Mohammadkazemia F., Doosthoseinib K., Ganjianc E., Azind M. Construction and Building Materials, 2015, pp. 958–964.

Lee K.-Y., Ho K.K.C., Schlufter K., Bismarck A. Composites Science and Technology, 2012, vol. 72, pp. 1479–1486.

Peters S.J., Rushing T.S., Landis E.N., Cummins T.K. Transportation Research Record Journal of the Transportation Research Board, 2010, pp. 25–28.

Bazhenov Yu.M., Yerofeyev V.T., Al' Dulaymi Salman Davud Salman. Russkiy inzhener, 2018, no. 4, pp. 46–48. (in Russ.).

Muhamad I.I., Muhamad S.N.H., Salehudin M.H., Zahan K.A., Tong W.Y., Pa’e N. Materials Today: Proceedings, 2020, vol. 3, pp. 89–95.

V poiskakh plastika: kak Greenpeace v Rossii i lyudi po vsey strane izuchali plastikovyy musor na beregakh mo-rey, rek i ozor. [In search of plastic: how Greenpeace in Russia and people across the country studied plastic waste on the shores of seas, rivers and lakes]. Moscow, 2020, 43 p. (in Russ.).

Schmidt-Traub G., Obersteiner M., Mosnier A. Nature, 2019, pp. 181–183.

Zheng J., Suh S. Nature climate change, 2019, vol. 9, pp. 374–378.

Glazkov S.V., Koptsev S.V., Lesnikova N.A., Bogdanova V.V., Volodarskaya T.K. Ovoshchi Rossii, 2018, no. 5, pp. 84–89. (in Russ.).

Jung S., Cui Y., Barnes M., Satam C. et al. Advanced Materials, 2020, vol. 32, 1908291.

Jafarzadeh S., Nafchi A.M., Salehabadi A., Oladzad-abbasabadi N. Advances in Colloid and Interface Science, 2021, vol. 291, 102405. DOI: 10.1016/j.cis.2021.102405.

Stroescu M., Isopencu G., Busuioc C., Stoica-Guzun A. Cellulose-Based Superabsorbent Hydrogels, 2019, pp. 1303–1338.

Zahan K.A., Azizul N.M., Mustapha M., Tong W.Y., Abdul Rahman M.S., Sahuri I.S. Materials Today: Proceedings, 2020, vol. 31, pp. 83–88.

Fabra M.J., López-Rubio A., Ambrosio-Martín J., Lagaron J.M. Food Hydrocolloids Volume, 2016, vol. 61, pp. 261–268.

Azeredo H., Barud H., Farinas C., Vasconcellos V., Claro A. Frontiers in Sustainable Food Systems, 2019, vol. 3. DOI: 10.3389/fsufs.2019.00007.

Salaria M., Khiabania M.S., Mokarrama R.R., Ghanbarzadehab B., Kafilc H.S. Food HydrocolloidsVolume, 2018, vol. 84, pp. 414–423.

Skiba E.А., Gladysheva E.K., Golubev D.S., Budaeva V.V. Carbohydrate Polymers, 2021, vol. 252, 117178. DOI: 10.1016/j.carbpol.2020.117178.

Biodegradable Superabsorbent Materials Market Size, Share & Trends Analysis Report by Product, 2016. URL: https://www.gminsights.com/industry-analysis/biodegradable-superabsorbent-materials-market.

Ramli R.A. Polymer Chemistry, 2019, vol. 10, no. 45, pp. 6073–6090.

Doelker E. Studies in Polymer Science, 1990, vol. 8, pp. 125–145.

Atykyan N.A., Revin V.V., Safonov A.V., Karaseva Ya.Yu., Proshin I.M., Shutova V.V. Radiokhimiya, 2021, vol. 63, no. 5, pp. 476–483. (in Russ.).

Skočaj M. Cellulose, 2019, vol. 26, pp. 6477–6488.

Lavric G., Medvescek D., Skocaj M. TAPPI Journal, 2020, vol. 19, pp. 197–203. DOI: 10.32964/TJ19.4.197.

Vandamme E.J., De Baets S., Vanbaelen A., Joris K., De Wulf P. Polymer Degradation and Stability, 1998, vol. 59, pp. 93–99.

Gomez N., Santos S.M., Carbajo J.M., Villar J.C. Bioengineering, 2017, vol. 4(4), 93. DOI: 10.3390/bioengineering4040093.

Sriplai N., Sirima P., Palaporn D., Mongkolthanaruk W., Eichhorn S.J., Pinitsoontorn S., Mater J. Journal of Materi-als Chemistry C, 2018, vol. 6, pp. 11427–11435.

Gismatulina Yu.A., Budayeva V.V., Sitnikova A.Ye., Bychin N.V., Gladysheva Ye.K., Shavyrkina N.A., Mirono-va G.F., Sevast'yanova Yu.V. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya, 2021, vol. 11, no. 3, pp. 460–471. (in Russ.).

Dhar P., Pratto B., Gonçalves Cruz A.J., Bankar S. Journal of Cleaner Production, 2019, 117859.

Yang Y., Liu W., Huang Q., Li X., Ling H., Ren J., Sun R., Zou J., Wang X. ACS Sustainable Chem. Eng., 2020, vol. 8, pp. 3392–3400.

Zhuravleva N., Reznik A., Kiesewetter D., Stolpner A., Khripunov A. Journal of Physics: Conference Series. 2018, vol. 1124, no. 3, 031008. DOI: 10.1088/1742-6596/1124/3/031008.

Islam N., Li S., Ren G., Zuo Y., Warzywoda J., Wang S., Zhaoyang F. Nano-Micro Letters, 2018, vol. 10, 9. DOI: 10.1007/s40820-017-0162-4.

Bakhman M., Petrukhin I.Yu., Butenko I.Ye., Dutka K.V., Gromovykh P.S. Yevraziyskoye nauchnoye ob"yedineniye, 2018, no. 6-2 (40), pp. 61–65. (in Russ.).

Chawla P., Bajaj I., Survase S., Rekha S. Food Technology and Biotechnology, 2009, vol. 47(2), pp. 107–124.

Schramm M., Hestrin S. Microbiology, 1954, vol. 11, pp. 123–129.

Lu Z., Zhang Y., Chi Y., Xu N., Yao W., Sun B. World Journal of Microbiology and Biotechnology, 2011, vol. 27, pp. 2281–2285.

Carreira P., Mendes J.A., Trovatti E., Serafim L.S., Freire C.S., Silvestre A.J., Neto C.P. Bioresource Technology, 2011, vol. 102, no. 15, pp. 7354–7360.

Vazquez A., Foresti M.L., Cerrutti P., Galvagno M. Journal of Polymers and the Environment, 2013, vol. 21, pp. 545–554.

Skiba E.A., Budaeva V.V., Ovchinnikova E.V., Gladysheva E.K., Kashcheyeva E.I., Pavlov I.N., Sakovich G.V. Chemical Engineering Journal, 2020, vol. 383, 123128. DOI: 10.1016/j.cej.2019.123128.

Bogatyreva A.O. Optimizatsiya usloviy biosinteza bakterial'noy tsellyulozy i polucheniye na yeye osnove bio-kompozitsionnykh materialov s antibakterial'nymi svoystvami: diss. … kand. biol. nauk. [Optimization of the condi-tions for the biosynthesis of bacterial cellulose and the production of bio-composite materials with antibacterial proper-ties on its basis: diss. … cand. biologist. Sciences]. Saransk, 2021, 220 p. (in Russ.).

Yassine F., Bassil N., Flouty R., Chokr A., Samrani A.E., Boiteux G., Tahchi M.E. Carbohydrate Polymers, 2016, vol. 146, pp. 282–291.

Coban E.P., Biyik H. African Journal of microbiology research, 2011, vol. 5, no. 9, pp. 1037–1045.

Lee K.Y., Buldum G., Mantalaris A., Bismarck A. Macromolecular bioscience, 2014, vol. 14, pp. 10–32.

Reiniati I., Hrymak A.N., Margaritis A. Critical Reviews in Biotechnology, 2016, vol. 36, pp. 1–12.

Son H.J., Heo M.S., Kim Y.G., Lee S.J. Biotechnol Appl Biochem, 2001, vol. 33, pp. 1–5.

Fan Mi Khan', Gromovykh T.I. Zhivyye sistemy i biologicheskaya bezopas-nost' naseleniya: Materialy IX Mezhdu-narodnoy nauchnoy konferentsii studentov i molodykh uchenykh [Living systems and biological safety of the popula-tion: Proceedings of the IX International scientific conference of students and young scientists], 2011, pp. 24–26. (in Russ.).

Hwang J.W., Yang Y.K., Hwang J.K., Pyun Y.R., Kim Y.S. J. Biosci. Bioeng., 1999, vol. 88, pp. 183–188.

Bae S., Shoda M. Biotechnol Bioeng., 2005, vol. 90, pp. 20–28.

Cielecka I., Ryngajłło M., Bielecki S. Applied Sciences, 2020, vol. 10(11), 3850. DOI: 10.3390/app10113850.

Bayrakdar T., Demirbağ D., Üstün-Aytekin Ö. Cellulose Chemistry and Technology, 2017, vol. 51(7-8), pp. 737–743.

Hornung M., Ludwig M., Schmauder H.P. Engineering in Life Sciences, 2007, vol. 7, no. 1, pp. 35–41.

Kim Y.-J., Kim J.-N., Wee Y.-J., Park D.-H., Ryu H.-W. Applied Biochemistry and Biotechnology, 2007, vol. 136–140, pр. 529–537.

Shi Z., Zhang Y., Phillips G.O., Yang G. Food Hydrocolloids, 2014, vol. 35, pp. 539–545.

Sitnikova A.Ye., Shavyrkina N.A., Budayeva V.V., Korchagina A.A., Bychin N.V. Yuzhno-sibirskiy nauchnyy vest-nik, 2021, no. 2(36), pp. 132–138. (in Russ.).

Jung J.Y., Khan T., Park J.K., Chang H.N. Korean Journal of Chemical Engineering, 2007, vol. 24(2), pp. 265–271.

Gea S., Pasaribu K.M., Sebayang K., Julianti E., Aisyah Amaturahim S., Rahayu S.U., Hutapea Y.A. AIP Conference Proceedings, 2018, 020064. DOI: 10.1063/1.5082469.

Published
2022-12-15
How to Cite
1. Rogova E. A., Alashkevich Y. D., Kozhukhov V. A., Lapin I. R., Kiselyov E. G. THE STATE AND PROSPECTS OF IMPROVING THE METHODS OF OBTAINING AND USING BACTERIAL CEL-LULOSE (REVIEW) // chemistry of plant raw material, 2022. № 4. P. 27-46. URL: http://journal.asu.ru/cw/article/view/11373.
Section
Reviews