INVESTIGATION OF THE DISTRIBUTION OF ELEMENTAL CONTAMINANTS IN VARIOUS MORPHOLOGICAL PARTS OF THE PUMPKIN BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

UDC 504.054:58.02:615.074

Keywords: morphological parts of pumpkin, elemental contaminants, bioconcentration factor, translocation factor, inductively coupled plasma mass spectrometry

Abstract

The main purpose of the investigation was to compare by inductively coupled plasma mass spectrometry the accumulation of elemental contaminants Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sr, Tl, V, Zn in the row roots - stems - leaves - peel - pulp - pumpkin seeds. It was found that Hg and Tl are absent in all objects of research at a level of sensitivity of the method. According to the degree of extraction by pumpkin roots from the soil the elements are arranged in the following order: Cd<Pb<Mn<Sr<Cr<As<Ni<Zn<Co<Cu<Fe<Al<Mo<V. V, Mo, Al, Fe are most vigorously accumulated by the roots, the average value of the bioconcentration factor of these elements is more than 100. It was found that pumpkin can limit entry of toxic and potentially carcinogenic elements into aboveground organs by accumulating them mainly in the roots. Values of the element’s translocation factors Al, As, Cd, Cr, Co, Ni, Pb, V for the stems, peel, pulp and seeds of pumpkin irrespective of the places of collection are less than 1, which means that a barrier type of accumulation is characteristic for the studied elements. It is concluded that pumpkin is an expeller of these elements and possesses protective mechanisms preventing their entry from the root system into the above-ground organs of the plant. The highest transport mobility belongs to Zn, its concentration in the seeds is higher than in other above-ground parts of the pumpkin. On this basis pumpkin seeds are recommended for use as a bioactive supplement. Species of pumpkins influence the distribution of the studied elements in the above-ground parts of this plant.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Valentina Vladimirovna Kosenko, Scientific Centre for Expert Evaluation of Medicinal Products

и.о. генерального директора, кандидат фармацевтических наук

Sergey Vasil'yevich Ovsienko, Scientific Centre for Expert Evaluation of Medicinal Products

заместитель генерального директора

Natalia Evgenievna Kuz'mina, Scientific Centre for Expert Evaluation of Medicinal Products

начальник лаборатории спектральных методов анализа, доктор химических наук

Viktor Mikhaylovich Shchukin, Scientific Centre for Expert Evaluation of Medicinal Products

ведущий эксперт

Elena Alexandrovna Khorolskaya, Scientific Centre for Expert Evaluation of Medicinal Products

эксперт 2 категории

References

Ovsiyenko S.V., Shchukin V.M., Blinkova Ye.A., Kuz'mina N.Ye. Vedomosti Nauchnogo tsentra ekspertizy sredstv meditsinskogo primeneniya. Regulyatornyye issledovaniya i ekspertiza lekarstvennykh sredstv, 2022, vol. 12, no. 1, pp. 41–55. DOI: 10.30895/1991-2919-2022-12-1-41-55. (in Russ.).

Ovsiyenko S.V., Kuz'mina N.Ye., Shchukin V.M., Blinkova Ye.A. Vedomosti Nauchnogo tsentra ekspertizy sredstv meditsinskogo primeneniya. Regulyatornyye issledovaniya i ekspertiza lekarstvennykh sredstv, 2022, vol. 12, no. 2, pp. 149–160. (in Russ.).

Ovsiyenko S.V., Kuz'mina N.Ye., Shchukin V.M., Blinkova Ye.A. Khimiko-farmatsevticheskiy zhurnal, 2022, vol. 56, no. 10, pp. 39–43. (in Russ.).

Perez Gutierrez R.M. Medicinal Chemistry, 2016, vol. 6, no. 1, pp. 12–21.

Assessment report on Cucurbita pepo L., semen. European Medicines agency. Committee on Herbal Medicinal Prod-ucts (HMPC), 2012.

Dorić M., Vidaković S., Kraljić K., Škevin D., Drakula S., Ćurić D. Journal of Food Process Engineering, 2019, vol. 42, no. 8, e13300. DOI: 10.1111/jfpe.13300.

Salehi B., Capanoglu E., Adrar N., Catalkaya G., Shaheen S., Jaffer M. Molecules, 2019, vol. 24, no. 10, 1854. DOI: 10.3390/molecules24101854.

Lim T.K. Edible Medicinal and Non-medicinal Plants. Netherlands: Springer Science+Business Media, 2012, vol. 2. DOI: 10.1007/978-94-007-1764-0_40.

Vahlensieck W., Theurer C., Pfitzer E., Patz B., Banik N., Engelmann U. Urologia internationalis, 2015, vol. 94, no. 3, pp. 286–295. DOI: 10.1159/000362903.

Schulz V., Hänsel R., Blumenthal M., Tyler V.E. Rational Phytotherapy: A Reference Guide for Physicians and Phar-macists. Springer Science & Business Media, 2004.

Muchemi G.N., Wanjau R.N., Murungi I.J., Njue W.M. African Journal of Food Science, 2015, vol. 9, no. 8, pp. 441–447. DOI: 10.5897/AJFS2015.1333.

Spasov A.A., Iyozhitsa I.N., Gurova N.A., Ivakhnenko I.V. Novyye lekarstva i novosti farmakoterapii, 2002, vol. 13, no. 1, pp. 27–40. (in Russ.).

Glew R.H., Glew R.S., Chuang L.T., Huang Y.S., Millson M., Constans D. Plant foods for human nutrition, 2006, vol. 61, no. 2, pp. 49–54. DOI: 10.1007/s11130-006-0010-z.

Dottoa J.M., Chacha J.S. Scientific African, 2020, vol. 10, e00575. DOI: 10.1016/j.sciaf.2020.e00575.

Larionov M.V., Larionov N.V. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2010, no. 1 (107), pp. 110–114. (in Russ.).

Mazhayskiy Yu.A., Torbatov S.A., Dubenok N.N., Pozhogin Yu.P. Agroekologiya tekhnogenno-zagryaznennykh landshaftov. [Agroecology of technogenically polluted landscapes]. Smolensk; Madzhenta, 2003, 384 p. (in Russ.).

Il'in V.B. Tyazhelyye metally v sisteme pochva – rasteniye. [Heavy metals in the soil-plant system]. Novosibirsk, 1991. (in Russ.).

Shchukin V.M., Zhigiley Ye.S., Yerina A.A., Shvetsova Yu.N., Kuz'mina N.Ye., Luttseva A.I. Khimiko-farmatsevticheskiy zhurnal, 2020, vol. 54, no. 9, pp. 57–64. DOI: 10.30906/0023-1134-2020-54-9-57-64. (in Russ.).

Kuznetsov A.M., Fesyun A.P., Samokhvalov S.G., Makhon'ka E.P. Metodicheskiye ukazaniya po opredeleniyu tya-zhelykh metallov v pochvakh sel'khozugodiy i produktsii rasteniyevodstva. [Guidelines for the determination of heavy metals in agricultural soils and crop production]. Moscow, 1992. (in Russ.).

Yadav R., Singh S., Kumar A., Singh A.N. Cost Effective Technologies for Solid Waste and Wastewater Treatment. Elsevier, 2022, pp. 179–208. DOI: 10.1016/B978-0-12-822933-0.00008-5.

Gajić G., Mitrović M., Pavlović P. Phytoremediation Potential of Perennial Grasses. Elsevier, 2020, pp. 115–164. DOI: 10.1016/B978-0-12-817732-7.00006-7.

Published
2023-06-26
How to Cite
1. Kosenko V. V., Ovsienko S. V., Kuz’mina N. E., Shchukin V. M., Khorolskaya E. A. INVESTIGATION OF THE DISTRIBUTION OF ELEMENTAL CONTAMINANTS IN VARIOUS MORPHOLOGICAL PARTS OF THE PUMPKIN BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY // chemistry of plant raw material, 2023. № 2. P. 215-222. URL: http://journal.asu.ru/cw/article/view/11579.
Section
Low-molecular weight compounds