HYDROGENATION OF ABIES WOOD ETHANOL-LIGNIN WITH HYDROGEN IN ETHANOL MEDIUM IN THE PRESENCE OF NiCuMo/SiO2 CATALYST

UDC 54-16, 67.08

  • Boris Nikolayevich Kuznetsov Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University Email: bnk@icct.ru
  • Angelina Viktorovna Miroshnikova Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University Email: miroshnikova.av@icct.krasn.ru
  • Aleksandr Sergeyevich Kazachenko Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University Email: leo_lion_leo@mail.ru
  • Sergey Viktorovich Baryshnikov Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS Email: bsv2861@mail.ru
  • Yuriy Nikolayevich Malyar Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University Email: yumalyar@gmail.com
  • Andrey Mikhaylovich Skripnikov Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University Email: and-skripnikov@yandex.ru
  • Ol'ga Yur'yevna Fetisova Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS Email: fou1978@mail.ru
  • Vadim Anatol'yevich Yakovlev Federal Research Center Boreskov Institute of Catalysis SB RAS Email: yakovlev@catalysis.ru
  • Oksana Pavlovna Taran Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University Email: oxanap@catalysis.ru
Keywords: abies wood ethanol-lignin, hydrogenation, ethanol medium, catalyst, NiCuМо/SiO2, phenolic compounds

Abstract

In the development of studies on the catalytic conversion of lignin to liquid hydrocarbons, the effect of the bifunctional NiCuMo/SiO2 catalyst on the yield and composition of abies wood ethanol-lignin hydrogenation products in ethanol medium at a temperature of 250 °C was established. According to thermogravimetric analysis data the main thermal decomposition of abies wood ethanol-lignin occurs in the range from 260 to 600 °C with the maximum rate of degradation (3.9%/min) at 398.3 °C. The catalyst increases the yield of liquid products from 75.0 to 88.0 wt%, and reduces the yield of solid residue from 14.0 to 0.6 wt%. The total yield of phenolic compounds of non-catalytic hydrogenation does not exceed 4.5 wt%. The bifunctional nickel-containing catalyst increases by two times (up to 9.2 wt.%) the yield of liquid phenolic products, among which dimers and 4-propyl guaiacol predominate. The molecular weight distribution of the liquid products of the catalytic hydrogenation of abies ethanol-lignin shifts to the low molecular weight region due to the increase in the content of dimeric and monomeric phenolic compounds in liquid products. The obtained methoxyphenols can be used as components of epoxy resins, polycarbonates, fuel additives, and in other areas.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Boris Nikolayevich Kuznetsov, Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University

доктор химических наук, профессор, заведующий лабораторией химии природного органического сырья, профессор кафедры органической и аналитической химии

Angelina Viktorovna Miroshnikova, Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University

младший научный сотрудник лаборатории химии природного органического сырья, ассистент кафедры органической и аналитической химии

Aleksandr Sergeyevich Kazachenko, Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University

кандидат химических наук, старший научный сотрудник лаборатории химии природного органического сырья, доцент кафедры органической и аналитической химии

Sergey Viktorovich Baryshnikov, Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS

кандидат химических наук, старший научный сотрудник лаборатории химии природного органического сырья

Yuriy Nikolayevich Malyar, Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University

кандидат химических наук, старший научный сотрудник лаборатории каталитических превращений возобновляемых ресурсов, доцент кафедры органической и аналитической химии

Andrey Mikhaylovich Skripnikov, Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University

младший научный сотрудник лаборатории химии природного органического сырья, ассистент кафедры органической и аналитической химии

Ol'ga Yur'yevna Fetisova, Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS

кандидат химических наук, научный сотрудник лаборатории физико-химических методов исследования материалов

Vadim Anatol'yevich Yakovlev, Federal Research Center Boreskov Institute of Catalysis SB RAS

доктор химических наук, руководитель инжинирингового центра

Oksana Pavlovna Taran, Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University

доктор химических наук, профессор, директор, заведующий кафедрой органической и аналитической химии

References

Luterbacher J.S., Martin Alonso D., Dumesic J.A. Green Chemistry, 2014, vol. 16, no. 12, pp. 4816–4838.

Zhao X., Zhou H., Sikarwar V.S., Zhao M., Park A.-H.A., Fennell P.S., Shen L., Fan L.-S. Energy & Environmental Science, 2017, vol. 10, no. 9, pp. 1885–1910.

Rowell R.M. Handbook of wood chemistry and wood composites. 2nd edn. CRC. Press: Taylor and Francis Group, 2012, 703 p.

Popa V.I. Pulp Production and Processing: High-Tech Applications. De Gruyter, Berlin, Boston, 2020, 404 p.

Amen-Chen C., Pakdel H., Roy C. Bioresource technology, 2001, vol. 79, pp. 277–299.

Gazi S. Applied Catalysis B: Environmental, 2019, vol. 257, 117936.

Zhang K., Pei Z., Wang D. Bioresource Technology, 2016, vol. 199, pp. 21–33.

Kuznetsov B.N., Sharypov V.I., Baryshnikov S.V., Miroshnikova A.V., Taran O.P., Yakovlev V.A., Lavrenov A.V., Djakovitch L. Catalysis Today, 2021, vol. 379, pp. 114–123.

Galkin M.V., Samec J.S.M. ChemSusChem, 2014, vol. 7, no. 8, pp. 2154–2158.

Ferrini P., Rinaldi R. Angew. Chem. Int. Ed. Engl., 2014, vol. 53, no. 33, pp. 8634–8639.

Dagle V.L., Smith C., Flake M., Albrecht K.O., Gray M.J., Ramasamy K.K., Dagle R.A. Green Chemistry, 2016, vol. 18, no. 7, pp. 1880–1891.

Kuznetsov B.N., Baryshnikov S.V., Miroshnikova A.V., Kazachenko A.S., Malyar Y.N., Skripnikov A.M., Taran O.P. Catalysts, 2021, vol. 11, no. 11, p. 1362.

Van den Bosch S., Renders T., Kennis S., Koelewijn S.F., Van den Bossche G., Vangeel T., Deneyer A., Depuydt D., Courtin C.M., Thevelein J.M., Schutyser W., Sels B.F. Green Chemistry, 2017, vol. 19, no. 14, pp. 3313–3326.

Zhang J., Asakura H., van Rijn J., Yang J., Duchesne P., Zhang B., Chen X., Zhang P., Saeys M., Yan N. Green Chemistry, 2014, vol. 16, no. 5, pp. 2432–2437.

Zhang J., Teo J., Chen X., Asakura H., Tanaka T., Teramura K., Yan N. ACS Catalysis, 2014, vol. 4, no. 5, pp. 1574–1583.

Bykova M.V., Ermakov D.Y., Khromova S.A., Smirnov A.A., Lebedev M.Y., Yakovlev V.А. Catalysis Today, 2014, vol. 220–222, pp. 21–31.

Sharypov V., Kusnetsov B., Yakovlev V., Beregovtsova N., Baryshnikov S. Catalysis in Industry, 2017, vol. 9, pp. 170–179.

Miroshnikova A.V., Baryshnikov S.V., Malyar Y.N., Yakovlev V.A., Taran O.P., Djakovitch L., Kuznetsov B.N. Si-berian Federal University. Chemistry, 2020, vol. 13, no. 2, pp. 247–259.

Quesada-Medina J., López-Cremades F.J., Olivares-Carrillo P. Bioresource Technology, 2010, vol. 101, no. 21, pp. 8252–8260.

Ermakova M.A., Ermakov D.Y. Applied Catalysis A: General, 2003, vol. 245, no. 2, pp. 277–288.

Brebu M., Vasile C. Cellulose Chemistry and Technology, 2010, vol. 44, pp. 353–363.

Poletto M. Maderas. Ciencia y tecnología, 2017, vol. 19, pp. 63–74.

Yussuf A., Kawamoto H., Saka S. Journal of Analytical and Applied Pyrolysis, 2011, vol. 92, pp. 88–98.

Renders T., Van den Bossche G., Vangeel T., Van Aelst K., Sels B. Current Opinion in Biotechnology, 2019, vol. 56, pp. 193–201.

Kazachenko A.S., Baryshnikov S.V., Chudina A.I., Malyar Yu.N., Sychev V.V., Taran O.P., Djakovitch L., Kuzne-tsov B.N. Khimiya rastitel'nogo syr'ya, 2019, no. 2, pp. 15–26. (in Russ.).

Baryshnikov S.V., Miroshnikova A.V., Kazachenko A.S., Malyar Yu.N., Taran O.P., Lavrenov A.V., Djakovitch L., Kuznetsov B.N. J. Sib. Fed. Univ. Chem., 2019, vol. 12, no. 4, pp. 550–561.

Ullah N., Odda A.H., Liang K., Kombo M.A., Sahar S., Ma L.-B., Fang X.-X., Xu A.-W. Green Chemistry, 2019, vol. 21, no. 10, pp. 2739–2751.

Dou X., Li W., Zhu C., Jiang X. Applied Catalysis B: Environmental, 2021, vol. 287, 119975.

Totong S., Daorattanachai P., Laosiripojana N., Idem R. Fuel Processing Technology, 2020, vol. 198, 106248.

Song Q., Wang F., Cai J., Wang Y., Zhang J., Yu W., Xu J. Energy & Environmental Science, 2013, vol. 6, no. 3, pp. 994–1007.

Xiao L.-P., Wang S., Li H., Li Z., Shi Z.-J., Xiao L., Sun R.-C., Fang Y., Song G. ACS Catalysis, 2017, vol. 7, no. 11, pp. 7535–7542.

Yang X., Hu X., Yang Z., Wang Q., Zaman A., Huang F., Jiang M. Renewable Energy, 2020, vol. 162, pp. 1285–1291.

Jedrzejczyk M.A., Van den Bosch S., Van Aelst J., Van Aelst K., Kouris P.D., Moalin M., Haenen G.R.M.M., Boot M.D., Hensen E.J.M., Lagrain B., Sels B.F., Bernaerts K.V. ACS Sustainable Chemistry & Engineering, 2021, vol. 9, no. 37, pp. 12548–12559.

ElSohly A.M., MacDonald J.I., Hentzen N.B., Aanei I.L., El Muslemany K.M., Francis M.B. Journal of the American Chemical Society, 2017, vol. 139, no. 10, pp. 3767–3773.

Published
2022-12-15
How to Cite
1. Kuznetsov B. N., Miroshnikova A. V., Kazachenko A. S., Baryshnikov S. V., Malyar Y. N., Skripnikov A. M., Fetisova O. Y., Yakovlev V. A., Taran O. P. HYDROGENATION OF ABIES WOOD ETHANOL-LIGNIN WITH HYDROGEN IN ETHANOL MEDIUM IN THE PRESENCE OF NiCuMo/SiO2 CATALYST // chemistry of plant raw material, 2022. № 4. P. 89-98. URL: http://journal.asu.ru/cw/article/view/11606.
Section
Biopolymers of plants