HYDROGENATION OF ABIES WOOD ETHANOL-LIGNIN WITH HYDROGEN IN ETHANOL MEDIUM IN THE PRESENCE OF NiCuMo/SiO2 CATALYST
UDC 54-16, 67.08
Abstract
In the development of studies on the catalytic conversion of lignin to liquid hydrocarbons, the effect of the bifunctional NiCuMo/SiO2 catalyst on the yield and composition of abies wood ethanol-lignin hydrogenation products in ethanol medium at a temperature of 250 °C was established. According to thermogravimetric analysis data the main thermal decomposition of abies wood ethanol-lignin occurs in the range from 260 to 600 °C with the maximum rate of degradation (3.9%/min) at 398.3 °C. The catalyst increases the yield of liquid products from 75.0 to 88.0 wt%, and reduces the yield of solid residue from 14.0 to 0.6 wt%. The total yield of phenolic compounds of non-catalytic hydrogenation does not exceed 4.5 wt%. The bifunctional nickel-containing catalyst increases by two times (up to 9.2 wt.%) the yield of liquid phenolic products, among which dimers and 4-propyl guaiacol predominate. The molecular weight distribution of the liquid products of the catalytic hydrogenation of abies ethanol-lignin shifts to the low molecular weight region due to the increase in the content of dimeric and monomeric phenolic compounds in liquid products. The obtained methoxyphenols can be used as components of epoxy resins, polycarbonates, fuel additives, and in other areas.
Downloads
Metrics
References
Luterbacher J.S., Martin Alonso D., Dumesic J.A. Green Chemistry, 2014, vol. 16, no. 12, pp. 4816–4838.
Zhao X., Zhou H., Sikarwar V.S., Zhao M., Park A.-H.A., Fennell P.S., Shen L., Fan L.-S. Energy & Environmental Science, 2017, vol. 10, no. 9, pp. 1885–1910.
Rowell R.M. Handbook of wood chemistry and wood composites. 2nd edn. CRC. Press: Taylor and Francis Group, 2012, 703 p.
Popa V.I. Pulp Production and Processing: High-Tech Applications. De Gruyter, Berlin, Boston, 2020, 404 p.
Amen-Chen C., Pakdel H., Roy C. Bioresource technology, 2001, vol. 79, pp. 277–299.
Gazi S. Applied Catalysis B: Environmental, 2019, vol. 257, 117936.
Zhang K., Pei Z., Wang D. Bioresource Technology, 2016, vol. 199, pp. 21–33.
Kuznetsov B.N., Sharypov V.I., Baryshnikov S.V., Miroshnikova A.V., Taran O.P., Yakovlev V.A., Lavrenov A.V., Djakovitch L. Catalysis Today, 2021, vol. 379, pp. 114–123.
Galkin M.V., Samec J.S.M. ChemSusChem, 2014, vol. 7, no. 8, pp. 2154–2158.
Ferrini P., Rinaldi R. Angew. Chem. Int. Ed. Engl., 2014, vol. 53, no. 33, pp. 8634–8639.
Dagle V.L., Smith C., Flake M., Albrecht K.O., Gray M.J., Ramasamy K.K., Dagle R.A. Green Chemistry, 2016, vol. 18, no. 7, pp. 1880–1891.
Kuznetsov B.N., Baryshnikov S.V., Miroshnikova A.V., Kazachenko A.S., Malyar Y.N., Skripnikov A.M., Taran O.P. Catalysts, 2021, vol. 11, no. 11, p. 1362.
Van den Bosch S., Renders T., Kennis S., Koelewijn S.F., Van den Bossche G., Vangeel T., Deneyer A., Depuydt D., Courtin C.M., Thevelein J.M., Schutyser W., Sels B.F. Green Chemistry, 2017, vol. 19, no. 14, pp. 3313–3326.
Zhang J., Asakura H., van Rijn J., Yang J., Duchesne P., Zhang B., Chen X., Zhang P., Saeys M., Yan N. Green Chemistry, 2014, vol. 16, no. 5, pp. 2432–2437.
Zhang J., Teo J., Chen X., Asakura H., Tanaka T., Teramura K., Yan N. ACS Catalysis, 2014, vol. 4, no. 5, pp. 1574–1583.
Bykova M.V., Ermakov D.Y., Khromova S.A., Smirnov A.A., Lebedev M.Y., Yakovlev V.А. Catalysis Today, 2014, vol. 220–222, pp. 21–31.
Sharypov V., Kusnetsov B., Yakovlev V., Beregovtsova N., Baryshnikov S. Catalysis in Industry, 2017, vol. 9, pp. 170–179.
Miroshnikova A.V., Baryshnikov S.V., Malyar Y.N., Yakovlev V.A., Taran O.P., Djakovitch L., Kuznetsov B.N. Si-berian Federal University. Chemistry, 2020, vol. 13, no. 2, pp. 247–259.
Quesada-Medina J., López-Cremades F.J., Olivares-Carrillo P. Bioresource Technology, 2010, vol. 101, no. 21, pp. 8252–8260.
Ermakova M.A., Ermakov D.Y. Applied Catalysis A: General, 2003, vol. 245, no. 2, pp. 277–288.
Brebu M., Vasile C. Cellulose Chemistry and Technology, 2010, vol. 44, pp. 353–363.
Poletto M. Maderas. Ciencia y tecnología, 2017, vol. 19, pp. 63–74.
Yussuf A., Kawamoto H., Saka S. Journal of Analytical and Applied Pyrolysis, 2011, vol. 92, pp. 88–98.
Renders T., Van den Bossche G., Vangeel T., Van Aelst K., Sels B. Current Opinion in Biotechnology, 2019, vol. 56, pp. 193–201.
Kazachenko A.S., Baryshnikov S.V., Chudina A.I., Malyar Yu.N., Sychev V.V., Taran O.P., Djakovitch L., Kuzne-tsov B.N. Khimiya rastitel'nogo syr'ya, 2019, no. 2, pp. 15–26. (in Russ.).
Baryshnikov S.V., Miroshnikova A.V., Kazachenko A.S., Malyar Yu.N., Taran O.P., Lavrenov A.V., Djakovitch L., Kuznetsov B.N. J. Sib. Fed. Univ. Chem., 2019, vol. 12, no. 4, pp. 550–561.
Ullah N., Odda A.H., Liang K., Kombo M.A., Sahar S., Ma L.-B., Fang X.-X., Xu A.-W. Green Chemistry, 2019, vol. 21, no. 10, pp. 2739–2751.
Dou X., Li W., Zhu C., Jiang X. Applied Catalysis B: Environmental, 2021, vol. 287, 119975.
Totong S., Daorattanachai P., Laosiripojana N., Idem R. Fuel Processing Technology, 2020, vol. 198, 106248.
Song Q., Wang F., Cai J., Wang Y., Zhang J., Yu W., Xu J. Energy & Environmental Science, 2013, vol. 6, no. 3, pp. 994–1007.
Xiao L.-P., Wang S., Li H., Li Z., Shi Z.-J., Xiao L., Sun R.-C., Fang Y., Song G. ACS Catalysis, 2017, vol. 7, no. 11, pp. 7535–7542.
Yang X., Hu X., Yang Z., Wang Q., Zaman A., Huang F., Jiang M. Renewable Energy, 2020, vol. 162, pp. 1285–1291.
Jedrzejczyk M.A., Van den Bosch S., Van Aelst J., Van Aelst K., Kouris P.D., Moalin M., Haenen G.R.M.M., Boot M.D., Hensen E.J.M., Lagrain B., Sels B.F., Bernaerts K.V. ACS Sustainable Chemistry & Engineering, 2021, vol. 9, no. 37, pp. 12548–12559.
ElSohly A.M., MacDonald J.I., Hentzen N.B., Aanei I.L., El Muslemany K.M., Francis M.B. Journal of the American Chemical Society, 2017, vol. 139, no. 10, pp. 3767–3773.
Copyright (c) 2022 chemistry of plant raw material
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.