THERMOCHEMICAL CONVERSION OF SUNFLOWER HUSKS

UDC 62-664.2

  • Yuliya Viktorovna Karaeva Institute of Power Engineering and Advanced Technologies, FRC Kazan Scientific Center, Russian Academy of Sciences https://orcid.org/0000-0002-9275-332X Email: julieenergy@list.ru
  • Svetlana Sergeyevna Timofeeva Institute of Power Engineering and Advanced Technologies, FRC Kazan Scientific Center, Russian Academy of Sciences https://orcid.org/0000-0003-4168-2442 Email: zvezdochka198512@mail.ru
  • Marat Fanilievich Gilfanov Institute of Power Engineering and Advanced Technologies, FRC Kazan Scientific Center, Russian Academy of Sciences Email: zaex@mail.ru
  • Rustem Faritovich Kamalov Institute of Power Engineering and Advanced Technologies, FRC Kazan Scientific Center, Russian Academy of Sciences Email: rustemran@mail.ru
  • Evgeny Alexandrovich Marfin Institute of Power Engineering and Advanced Technologies, FRC Kazan Scientific Center, Russian Academy of Sciences; Institute of Physics, Kazan (Volga region) Federal University Email: marfin76@mail.ru
Keywords: sunflower husks, pyrolysis, material balance, pyrolysis fluid, dynamic viscosity, chemical composition

Abstract

The article presents the results of experimental studies of the process of thermochemical conversion of sunflower husk by pyrolysis at a temperature of 550 °C and heating rate of 10 °C/min. The main physico-chemical characteristics of this plant raw material correspond to commercial fuels. Ashes are dominated by potassium (38.7%), calcium (26.9%) and iron (13.6%) oxides. Thermochemical conversion of sunflower husks produces 56.49% of pyrolysis liquid, 29.26% of carbonaceous residue and 14.25% of gas. Experimental data of pyrolysis fluid viscosity dependence on temperature in the range from –6 to +23.5 °С were obtained. As a result of GC-MS analysis mass spectra of 90 substances of organic nature were obtained, of which 20 were identified, which corresponds to 77.3% of the entire fraction. Pyrolysis fluid contains acids, alcohols, esters, ketones, amides, aldehydes, alkenes, phenols. Taking into account boiling points of the components included in the liquid fraction, it was found that it is reasonable to extract acetic acid and methyl alcohol. The acetic acid content in the pyrolysis liquid under study reaches 31.98% and the methanol content 12.05%. It should be noted that the content of propanoic acid, 2-oxo-, ethyl ester (6.20%) is high enough, but its boiling point coincides with a number of other components, so distillation of this component is inexpedient. Thus, the obtained pyrolysis liquid is a source of raw materials for obtaining at least two high added value products.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Yuliya Viktorovna Karaeva, Institute of Power Engineering and Advanced Technologies, FRC Kazan Scientific Center, Russian Academy of Sciences

кандидат технических наук, ведущий научный сотрудник лаборатории энергетических систем и технологий

Svetlana Sergeyevna Timofeeva, Institute of Power Engineering and Advanced Technologies, FRC Kazan Scientific Center, Russian Academy of Sciences

кандидат технических наук, старший научный сотрудник лаборатории энергетических систем и технологий

Marat Fanilievich Gilfanov, Institute of Power Engineering and Advanced Technologies, FRC Kazan Scientific Center, Russian Academy of Sciences

младший научный сотрудник лаборатории энергетических систем и технологий

Rustem Faritovich Kamalov, Institute of Power Engineering and Advanced Technologies, FRC Kazan Scientific Center, Russian Academy of Sciences

кандидат технических наук, старший научный сотрудник лаборатории энергетических систем и технологий

Evgeny Alexandrovich Marfin, Institute of Power Engineering and Advanced Technologies, FRC Kazan Scientific Center, Russian Academy of Sciences; Institute of Physics, Kazan (Volga region) Federal University

кандидат технических наук, доцент, ведущий научный сотрудник лаборатории теплофизики и волновых технологий

References

D'yakova N.A., Dronova A.V. Khimiya Rastitel'nogo Syr'ya, 2022, no. 2, pp. 35–50. DOI: 10.14258/jcprm.20220210658. (in Russ.).

Islamova S.I., Dobrynin A.B. Khimiya Rastitel'nogo Syr'ya, 2022, no. 1, pp. 325–334. DOI: 10.14258/jcprm.20220110226. (in Russ.).

Tuzhikov O.I., Hohlova T.V., Orlova S.A., Tuzhikov O.O. Izvestiya Volgogradskogo gosudarstvennogo tekhnich-eskogo universitet, 2021, no. 5 (252), pp. 32–36. DOI: 10.35211/1990-5297-2021-5-252-32-36. (in Russ.).

Lugovoj Yu.V., Chalov K.V., Shimanskaya E.I., Stepacheva A.A., Sul'man E.M. Byulleten' nauki i praktiki. Elektronnyj zhurnal, 2017, no. 12 (25), pp. 62–69. (in Russ.).

Xiao L., Wen H., Shubin W. BioResources, 2016, vol. 11 (4), pp. 8806–8819. DOI: 10.15376/biores.11.4.8806-8819.

Casoni A.I., Bidegain M., Cubitto M.A., Curvetto N., Volpe M.A. Bioresource Technology, 2015, vol. 177, pp. 406–409. DOI: 10.1016/j.biortech.2014.11.105.

Zabaniotou A.A., Kantarelis E.K., Theodoropoulos D.C. Bioresource Technology, 2008, vol. 99 (8), pp. 3174–3181. DOI: 10.1016/j.biortech.2007.05.060.

Silva M.P., Nieva Lobos M.L., Piloni R.V. et al. SN Applied Sciences, 2020, vol. 2, article 1926. DOI: 10.1007/s42452-020-03730-x.

Antal M.J., Wade S.R., Nunoura T. Journal of Analytical and Applied Pyrolysis, 2007, vol. 79 (1–2), pp. 86–90. DOI: 10.1016/j.jaap.2006.09.005.

Kazimierski P., Januszewicz K., Godlewski W., Fijuk A., Suchocki T., Chaja P., Barczak B., Kardaś D. Materials, 2022, vol. 15(3), article 1038. DOI: 10.3390/ma15031038.

Maksimuk Yu.V., Kruk V.S., Antonova Z.A., Ponomarev D.A., Sushkova A.V. Lesnoy zhurnal, 2016, no 6, pp. 110–121, DOI: 10.17238/issn0536- 1036.2016.6.110. (in Russ.).

García R., Pizarro C., Lavín A.G., Bueno J.L. Bioresource Technology, 2012, vol. 103, pp. 1249–1258. DOI: 10.1016/j.biortech.2011.10.004.

Shumovskij A.V., Gorlov E.G., Noshin M.A. Himiya tverdogo topliva, 2020, no. 1, pp. 30–37, DOI: 10.31857/S0023117720010090. (in Russ.).

Paleckienė R., Sviklas A.M., Šlinkšienė R., Štreimikis V. Polish Journal of Environmentel Studies, 2010, vol. 19 (5), pp. 973–979.

Kovekhova A.V., Zemnuhova L.A., Aref'eva O.D. Izvestiya vuzov. Prikladnaya himiya i biotekhnologiya, 2017, no. 3, pp. 9–18. DOI: 10.21285/2227-2925-2017-7-3-9-18. (in Russ.).

Pattanayak S., Hauchhum L., Loha Ch., Sailo L. Biomass Conversion and Biorefinery, 2020, vol. 10, pp. 401–407. DOI: 10.1007/s13399-019-00421-5.

Karaeva J.V., Timofeeva S.S., Bashkirov V.N. et al. Biomass Conversion and Biorefinery, 2021, vol. 13, pp. 685–695. DOI: 10.1007/s13399-020-01138-6.

Casoni A.I., Bidegain M., Cubitto M.A., Curvetto N., Volpe M.A. Bioresource Technology, 2015, vol. 177, pp. 406–409. DOI: 10.1016/j.biortech.2014.11.105.

Feller E.Yu., Kopylova O.I., Avdeeva D.A., Efanov M.V., Beushev A.A., Kon'shin V.V. Polzunovskij vestnik, 2019, no. 1, pp. 128–131. DOI: 10.25712/ASTU.2072-8921.2019.01.023. (in Russ.).

Zhao C., Jiang E., Chen A. Journal of the Energy Institute, 2017, vol. 90(6), pp. 902–913. DOI: 10.1016/j.joei.2016.08.004.

Szwaja S., Magdziarz A., Zajemska M., Poskart A., Musial D. 2nd International Conference on the Sustainable Energy and Environmental Development IOP Conf. Series: Earth and Environmental Science, 2019, vol. 214, article 012140. DOI: 10.1088/1755-1315/214/1/012140.

Zhang J., Sekyere D.T., Niwamanya N., Huang Y., Barigye A., Tian Y. ACS Omega, 2022, vol. 7 (5), pp. 4245–4256. DOI: 10.1021/acsomega.1c05907.

Mar'yandyshev P.A., Kangash A.I., Pokryshkin S.A., Lyubov V.K., Tuve G., Brijard A., Brijak Zh.F. Himiya tverdogo topliva, 2021, no. 3, pp. 29–36. DOI: 10.31857/S0023117721030099. (in Russ.).

Kuz'mina R.I., Shtykov S.N., Pankin K.E., Ivanova Yu.V., Panina T.G. Pishchevaya promyshlennost', 2010, no. 7, pp. 21–22. (in Russ.).

Sarchami T., Batta N., Berruti F. Biofuels, Bioproducts and Biorefining, 2021, vol. 15, pp. 1912–1937. DOI: 10.1002/bbb.2273.

Tuncev D.V., Halitov A.Z., Grachyov A.N. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2010, no. 9, pp. 103–109. (in Russ.).

Kamarudin S.K., Shamsul N.S., Ghani J.A., Chia S.K., Liew H.S., Samsudin A.S. Bioresource Technology, 2013, vol. 129, pp. 463–468. DOI: 10.1016/j.biortech.2012.11.016.

Iaccarino A., Gautam R., Sarathy S.M. Sustainable Energy & Fuels, 2021, vol. 5, no. 8, pp. 2234–2248. DOI: 10.1039/D0SE01664K.

Published
2023-06-26
How to Cite
1. Karaeva Y. V., Timofeeva S. S., Gilfanov M. F., Kamalov R. F., Marfin E. A. THERMOCHEMICAL CONVERSION OF SUNFLOWER HUSKS // chemistry of plant raw material, 2023. № 2. P. 335-344. URL: http://journal.asu.ru/cw/article/view/11738.
Section
Technology