INDIRECT ELECTROCATALYTIC OXIDATION OF STARCH BY REACTIVE OXYGEN SPECIES IN SITU GENER-ATED ON Pb/PbO2 ANODE AND BORON-DOPED DIAMOND ELECTRODE IN AQUEOUS ELECTROLYTES

UDC 541.135:547.0

  • Galina Vasil'yevna Kornienko Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS Email: kornienko@icct.ru
  • Svetlana Nikolayevna Kapaeva Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS Email: Sveta0480@inbox.ru
  • Vasiliy Leont'yevich Kornienko Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS Email: kvl@icct.ru
  • Andrey Mikhaylovich Skripnikov Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University Email: And-skripnikov@yandex.ru
  • Oksana Pavlovna Taran Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University Email: taran.op@icct.krasn.ru
Keywords: electrocatalytic oxidation, potato starch, starch dialdehyde

Abstract

The indirect electrocatalytic oxidation of starch by reactive oxygen species (ROS) generated in situ on lead dioxide anodes and a boron-doped diamond electrode in an acidic aqueous electrolyte has been studied. The influence of the current density, concentration and state of aggregation of the reagent, the scheme of introduction of ROS on the kinetics and yields of the product of indirect oxidation of starch dialdehyde karazmal has been established. The optimal conditions for obtaining oxidized starch were determined: anode – Pb/PbO2, current density – 25 mA/cm-2, electrolyte pH 2–3, electrolysis time – 80 min, 25 °C. Starch oxidation products were analyzed by the following methods: spectrophotometry after deratization with dinitrophenylidrazine, gas chromatography-mass spectrometry after hydrolysis and silylation, and IR spectroscopy. Glucose tautomers, as well as ethylene glycol oligomers, were found in the hydrolyzates of the reaction products by GCMS, indicating the breaking of C-C bonds in the monosaccharide units during the oxidation process.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Galina Vasil'yevna Kornienko, Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS

кандидат химических наук, старший научный сотрудник

Svetlana Nikolayevna Kapaeva, Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS

младший научный сотрудник

Vasiliy Leont'yevich Kornienko, Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS

доктор химических наук, ведущий научный сотрудник

Andrey Mikhaylovich Skripnikov, Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University

младший научный сотрудник

Oksana Pavlovna Taran, Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University

доктор химических наук, директор

References

Valeyeva N.Sh., Khasanova G.B. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2013, vol. 16, no. 22, pp. 184–187. (in Russ.).

Rus'kina A.A., Popova N.V., Naumenko N.V., Rus'kin D.V. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universi-teta. Seriya: Pishchevyye i biotekhnologii, 2017, vol. 5, no. 3, pp. 12–20. DOI: 10.14529/food170302. (in Russ.).

Beletskaya I.P., Kustov L.M. Uspekhi khimii, 2010, vol. 79, no. 6, pp. 493–515. (in Russ.).

Korniyenko V.L., Kolyagin G.A., Korniyenko G.V., Kenova T.A. Elektrokhimiya, 2020, vol. 56, no. 5, pp. 427–441. DOI: 10.31857/S0424857020050060. (in Russ.).

Zarei M., Niaei А., Salari D. Journal of electroanalytical chemistry, 2010, vol. 639, no. 1-2, pp. 167–174. DOI: 10.1016/j.jelechem.2009.12.005.

Korniyenko V.L. Khimiya v interesakh ustoychivogo razvitiya, 2002, vol. 10, p. 391. (in Russ.).

Ogibin Yu.N., Elinson M.N., Nikishin G.I. Uspekhi khimii, 2009, vol. 78, p. 99. (in Russ.).

Brillas E. et al. Journal of the Electrochemical Society, 1995, vol. 142, no. 6, p. 1733. DOI: 10.1149/1.2044186.

Nidheesh P.V., Zhou M., Oturan M.A. Chemosphere, 2018, vol. 197, pp. 210–227. DOI: 10.1016/j.chemosphere.2017.12.195.

Dang X. et al. International journal of biological macromolecules, 2019, vol. 121, pp. 113–119. DOI: 10.1016/j.ijbiomac.2018.10.012.

Li D. et al. Journal of Industrial Engineering Chemistry, 2022, vol. 105, pp. 405–413.

Comninellis C. Electrochimica Acta, 1994, vol. 39, no. 11-12, pp. 1857–1862. DOI: 10.1016/0013-4686(94)85175-1.

Martinez-Huitle C.A., Ferro S. Chemical Society Reviews, 2006, vol. 35, no. 12, pp. 1324–1340. DOI: 10.1039/B517632H.

Li D. et al. Journal of hazardous materials, 2020, vol. 396, 122591.

Dang X. et al. International journal of biological macromolecules, 2019, vol. 121, pp. 113–119. DOI: 10.1016/j.ijbiomac.2018.10.012.

Butrim S.M., Bil'dyukevich T.D., Butrim N.S., Yurkshtovich T.L. Izvestiya vysshikh uchebnykh zavedeniy. Khimiya i khimicheskaya tekhnologiya, 2015, vol. 58, no. 1, pp. 28–32. (in Russ.).

Parovuori P. Hamunen A., Forssell P., Autio K. Starch-Stärke, 1995, vol. 47, no. 1, pp. 19–23. DOI: 10.1002/star.19950470106.

Tolvanen P., Mäki-Arvela P., Sorokin A.B., Salmi T., Murzin D.Yu. Chemical Engineering Journal, 2009, vol. 154, no. 1-3, pp. 52–59. DOI: 10.1016/j.cej.2009.02.001.

Fioshin M.Ya., Smirnova M.G. Elektrokhimicheskiye sistemy v sinteze khimicheskikh produktov. [Electrochemical sys-tems in the synthesis of chemical products]. Moscow, 1985, 256 p. (in Russ.).

Korniyenko G.V., Kapayeva S.N., Malyar Yu.N., Korniyenko V.L., Taran O.P. Khimiya rastitel'nogo syr'ya, 2021, no. 4, pp. 119–127. DOI: 10.14258/jcprm.20210410590. (in Russ.).

Shamb U., Setterfild Ch., Ventvors R. Perekis' vodoroda. [Hydrogen peroxide]. Moscow, 1958, 578 p. (in Russ.).

Ruiz-Matute A., Hernandez-Hernandez O., Rodríguez-Sánchez S., Sanz M., Martínez-Castro I. Journal of chromatog-raphy B, 2010, vol. 879, pp. 1226–1240. DOI: 10.1016/j.jchromb.2010.11.013.

Abd El Aal E.E. Journal of power sources, 2001, vol. 102, no. 1-2, pp. 233–241. DOI: 10.1016/S0378-7753(01)00804-7.

Zhang Y.R., Zhang S.D., Wang X.L., Chen R.Y., Wang Y.Z. Carbohydrate Polymers, 2009, vol. 78, no. 1, pp. 157–161. DOI: 10.1016/j.carbpol.2009.04.023.

Brillas E., Martínez-Huitle C.A. Electrochemistry, Characterization, and Applications, 2011, vol. 8.

Damodkhar G., Prabir G. Elektrokhimiya, 2019, vol. 55, no. 7, pp. 771–807. DOI: 10.1134/S0424857019050050. (in Russ.).

Ribeiro L.S., Órfão J.J.M., Pereira M.F.R. Bioresource Technology, 2018, vol. 263, pp. 402–409.

Gromov N.V., Zhdanok A.A., Medvedeva T.B., Lukoyanov I.A., Poluboyarov V.A., Taran O.P., Parmon V.N., Timofeeva M.N. Catalysis in Industry, 2020, vol. 12, no. 4, pp. 343–352.

Published
2022-12-15
How to Cite
1. Kornienko G. V., Kapaeva S. N., Kornienko V. L., Skripnikov A. M., Taran O. P. INDIRECT ELECTROCATALYTIC OXIDATION OF STARCH BY REACTIVE OXYGEN SPECIES IN SITU GENER-ATED ON Pb/PbO2 ANODE AND BORON-DOPED DIAMOND ELECTRODE IN AQUEOUS ELECTROLYTES // chemistry of plant raw material, 2022. № 4. P. 77-88. URL: http://journal.asu.ru/cw/article/view/12022.
Section
Biopolymers of plants