ADSORPTION WATER TREATMENT WITH ADSORBENTS BASED ON VEGETABLE RAW MATERIALS

UDC 628.316.13

  • Muslima Iftikhorovna Karabayeva Fergana Polytechnic Institute Email: muslimaxon1990@mail.ru
  • Saodat Rakhmatzhanovna Mirsalimova Fergana Polytechnic Institute Email: s.mirsalimova@ferpi.uz
  • Dilnoza Saidakbarovna Salikhanova Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan Email: salihanova79@mail.ru
  • Navruza Nematjonovna Ubaydullayeva Namangan State University Email: navruzaubaydullayeva82@mail.ru
Keywords: activated carbon, biosorbent, activation, lead, turbidity, fluorine, zinc, metoprolol

Abstract

Currently, the world of environmental protection through the disposal of industrial waste and their rational processing is one of the main problems at the global level, aimed at improving the well-being of the population. However, the rapid development of industrial enterprises is accompanied by the formation of a significant amount of various wastes, including wastewater. Wastewater treatment from various pollutants is important from an environmental and economic point of view. At the same time, the accumulation of plant waste is an unimportant problem. One of the solutions to this problem is the production of environmentally friendly adsorbents based on plant materials. Recent years The recovery of biomass and waste biomass in the last decade has attracted the attention of an increasing number of scientists. Activated carbon (AC), used to remove organic micro-pollutants in the world's wastewater treatment plants, is usually produced from non-renewable resources such as peat, lignite, coal, anthracite, wood materials, waste paper, leather industry and animal products that needs to be transported over long distances. The use of biomass as feedstock can be beneficial in terms of sustainability. The review is devoted to the analysis of publications in this field in recent years. The main areas of application of adsorbents based on pine cones are considered. Examples of the implementation of the production of an adsorbent based on plant wastes and their use for water purification from various chemicals are given.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Muslima Iftikhorovna Karabayeva, Fergana Polytechnic Institute

PhD, старший преподаватель кафедры химии и химической технологии

Saodat Rakhmatzhanovna Mirsalimova, Fergana Polytechnic Institute

кандидат химических наук, профессор кафедры химии и химической технологии

Dilnoza Saidakbarovna Salikhanova, Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan

доктор технических наук, ведущий научный сотрудник

Navruza Nematjonovna Ubaydullayeva, Namangan State University

докторант

References

Sharkov V.I., Kuybina N.I., Solov'yeva Yu.P., Pavlova T.A. Kolichestvennyy khimicheskiy analiz rastitel'nogo syr'ya. [Quantitative chemical analysis of plant raw materials]. Moscow, 1976, 72 p. (in Russ.).

Mirsalimova S.R., Salikhanova D.S., Karabayeva M.I. Universum: tekhnicheskiye nauki, 2021, no. 4 (85), pp. 24–26. (in Russ.).

Obolenskaya A.V., Yel'nitskaya Z.P., Leonovich A.A. Laboratornyye raboty po khimii drevesiny i tsellyulozy. [Labor-atory work on the chemistry of wood and cellulose]. Moscow, 1991, 310 p. (in Russ.).

Tian A., Xiaojun J., Qingyu L. Sep. Sci. Technol., 2020, vol. 55, pp. 1249–1259.

Kaur M., Kumari S., Sharma P. Biotechnol. Rep., 2019, vol. 25, e00410. DOI: 10.1016/j.btre.2019.e00410.

Adewuyi A., Pereira F.V. Beni-Suef Univ. J. Basic Appl. Sci., 2017, vol. 6(2), p. 118.

Khoshsang H., Ghaffarinejad A. J. Environ. Chem. Engin., 2018, vol. 6(5), p. 6021.

Vieira R.M., Vilela P.B., Becegato V.A., Paulino A.T. J. Environ. Chem. Engin., 2018, vol. 6, p. 2713.

Bowman N., Patel D., Sanchez A.X.U.W., Alsaffar A., Tiquia-Arashiro S.M. Appl. Microbiol. Biotechnol., 2018, vol. 102, p. 2391.

Chanthapon N., Sarkar S., Kidkhunthod P., Padungthon S. J. Chem. Engin., 2018, vol. 331, p. 545.

Ashrafi M., Bagherian G., Chamjangali M.A., Goudarzi N., Amin A.H. Mater. Res. Express., 2018, vol. 5, 056103. DOI: 10.1088/2053-1591/aac0c3.

Ashrafi M., Borzuie H., Bagherian G., Chamjangali M.A., Nikoofard H. Sep. Sci. Technol., 2020, vol. 55, p. 222.

Altundoğan H.S., Topdemir A., Çakmak M., Bahar N. J. Taiwan Inst. Chem. Eng., 2016, vol. 58, pp. 219–225.

Nguyen T.A.H., Ngo H.H., Guo W.S., Zhang J., Liang S., Yue Q.Y., Nguyen T.V. Bioresour. Technol., 2013, vol. 148, p. 574

Chen B., Liu Y., Chen S., Zhao X., Meng X., Pan X. J. Taiwan Inst. Chem. Eng., 2016, vol. 67, p. 191.

Kyzas G.Z., Siafaka P.I., Pavlidou E.G., Chrissafis K.J., Bikiaris D.N. Chem. Engin. J., 2015, vol. 259, p. 438.

Ghadamali B., Elham N., Mansour C., Motahare A. Journal of the Iranian Chemical Society, 2021, vol. 18, pp. 2369–2379. DOI: 10.1007/s13738-021-02196-x.

Kumar N.S., Asif M., Al-Hazzaa M.I. Environ. Sci. Pollut. Res. Int., 2018, vol. 25(22), pp. 21949–21960. DOI: 10.1007/s11356-018-2315-5.

Ramavandi B. Water Resour. Ind., 2014, vol. 6, pp. 36–50. DOI: 10.1016/j.wri.2014.07.001.

Mallevialle J., Bruchet A., Fiessinger F. Journal American Water Works Association, 1984, vol. 76, pp. 87–93. DOI: 10.1002/j.1551-8833.1984.tb05354.x.

Ndabigengesere A., Narasiah K.S., Talbot B.G. Water Res., 1995, vol. 29, pp. 703–710.

Raghuwanshi P.K., Mandloi M., Sharma A.J., Malviya H.S., Chaudhari S. Water Qual. Res. J. Can., 2002, vol. 37, pp. 745–756.

Diaz F.C., Rincon N., Escorihuela A., Fernandez N., Chacin E. Process Biochem., 1999, vol. 35, pp. 391–395.

Sciban M., Klasnja M., Antov M., Skrbic B. Bioresour. Technol., 2009, vol. 100, pp. 6639–6643.

Hussain S., Ghouri A.S., Ahmad A. Heliyon, 2019, vol. 5, e01500. DOI: 10.1016/j.heliyon.2019.e01500.

Ayoob S., Gupta A.K. Crit. Rev. Environ Sci. Technol., 2006, vol. 36, pp. 433–487. DOI: 10.1080/10643380600678112.

Ghosh A., Mukherjee K., Ghosh S.K., Saha B. Res. Chem. Intermed., 2013, vol. 39, pp. 2881–2915. DOI: 10.1007/s11164-012-0841-1.

Jha S.K., Mishra V.K., Sharma D.K., Damodaran T. Reviews of environmental contamination and toxicology. Springer, New York, 2011, vol. 211, pp. 121–142.

Meenakshi M.R.C. J. Hazard Mater., 2006, vol. 137, pp. 456–463. DOI: 10.1016/j. jhazmat.2006.02.024.

Cases A., Coll E. Proc. Second Int. Conf. New Insights Progress Chronic Kidney Dis., 2005, vol. 68, pp. 87–93. DOI: 10.1111/j.1523-1755.2005.09916.x.

National Research Council, Division on Earth and Life Studies, Board on Environmental Studies and Toxicology, Committee on Fluoride in Drinking Water. Fluoride in Drinking Water: A Scientific Review of EPA's Standards. Na-tional Academies Press, 2007, 530 p.

Singh P.P., Barjatiya M.K., Dhing S. Urol. Res., 2001, vol. 29, pp. 238–244. DOI: 10.1007/s002400100192.

Li Y., Li X., Wei S. J. West China Univ. Med. Sci., 1994, vol. 25, pp. 188–191.

Mullenix P.J., Denbesten P.K., Schunior A., Kernan W.J. Neurotoxicol Teratol., 1995, vol. 17, pp. 169–177. DOI: 10.1016/0892-0362(94)00070-T.

Susheela A.K., Toteja G. Indian J. Med. Res., 2018, vol. 148, p. 539.

Gupta I.P., Das T.K., Susheela A.K. J. Gastroenterol Hepatol., 1992, vol. 7, pp. 355–359. DOI: 10.1111/j.1440-1746.1992.tb009 96.x.

Jagtap S., Yenkie M.K., Labhsetwar N., Rayalu S. Chem. Rev., 2012, vol. 112, pp. 2454–2466. DOI: 10.1021/cr2002855.

Alagumuthu G., Rajan M. Chem. Eng. J., 2010, vol. 158, pp. 451–457. DOI: 10.1016/j.cej.2010.01.017.

Araga R., Soni S., Sharma C.S. J. Environ Chem. Eng., 2017, vol. 5, pp. 5608–5616. DOI: 10.1016/j.jece.2017.10.023.

Delgadillo-Velasco L., Hernández-Montoya V., Cervantes F.J. J. Environ Manage., 2017, vol. 201, pp. 277–285. DOI: 10.1016/j.jenvm an.2017.06.038.

Ravulapalli S., Kunta R. J. Fluor. Chem., 2017, vol. 193, pp. 58–66. DOI: 10.1016/j.jfuc hem.2016.11.013.

Sivasankar V., Rajkumar S., Murugesh S., Darchen A. Chem. Eng. J., 2012, vol. 197, pp. 162–172. DOI: 10.1016/j.cej.2012.05.023.

Talat M. Groundw Sustain Dev., 2018, vol. 7, pp. 48–55. DOI: 10.1016/j.gsd.2018.03.001.

Thakur R.S., Katoch S.S., Modi A. SN Applied Sciences, 2020, vol. 2(8), 1407. DOI: 10.1007/s42452-020-03207-x.

Ali H.A., Algon A.A.A., Chyad S.S., Al-Mulla E.A. Nano Biomed. Eng J., 2017, vol. 9(4), pp. 285–290.

Chyad T.F., Al-Hamadani R.F.C., Hammood Z.A., Ali G.A. Materials Today: Proceedings, 2023, vol. 80, pp. 2706–2711. DOI: 10.1016/j.matpr.2021.07.016.

Naghipour D., Amouei A., Taher Ghasemi K., Taghavi K. Environmental Health Engineering and Management, 2019, vol. 6(2), pp. 81–88. DOI: 10.15171/EHEM.2019.09.

Dawood S., Sen T.K., Phan C. Bioresource Technology, 2017, vol. 246, pp. 76–81. DOI: 10.1016/j.biortech.2017.07.019.

Dawood S., Sen T.K. Water Research, 2012, vol. 46, pp. 1933–1946. DOI: 10.1016/j.watres.2012.01.009.

Kakiye strany ispytyvayut nedostatok presnoy vody [Which countries are experiencing a lack of fresh water]. URL: https://magictemple.ru/kakie-strany-ispytyvajut-nedostatok-presnoj-vody/. (in Russ.).

Karabayeva M.I., Mirsalimova S.R., Salikhanova D.S. Uzbekskiy khimicheskiy zhurnal, 2021, no. 5, pp. 50–55. (in Russ.).

Karabayeva M.I. ACADEMICIA: An International Multidisciplinary Research Journal, 2020, vol. 10, no. 11, pp. 442–445.

Ofomaja A.E., Naidoo E.B., Modise S.J. Journal of Environmental Management, 2010, vol. 91, no. 8, pp. 1674–1685.

Amar M.B., Walha K., Salvadó V. Adsorption Science and Technology, 2021, 6678530. DOI: 10.1155/2021/6678530.

Geçgel Ü., Kolanclar H. Natural Product Research, 2012, vol. 26, pp. 659–664.

Kaya N., Uzun Z.Y. Biomass Conversion and Biorefinery, 2021, vol. 11, pp. 1067–1083.

Zhang X., Zhang S., Yang H. Energy, 2015, vol. 91, pp. 903–910. DOI: 10.1016/j.energy.2015.08.028.

Manyà J.J., González B., Azuara M., Arner G. Chem. Eng. J., 2018, vol. 345, pp. 631–639. DOI: 10.1016/j.cej.2018.01.092.

Matabosch Coromina H., Walsh D., Mokaya R. J. Mater. Chem. A, 2016, vol. 4, pp. 280–289. DOI: 10.1039/C5TA09202G.

Li D., Ma T., Zhang R. Fuel, 2015, vol. 139, pp. 68–70. DOI: 10.1016/j.fuel.2014.08.027.

Vargas D.P., Giraldo L., Silvestre-Albero J., Moreno-Piraján J.C. Adsorption, 2011, vol. 17, pp. 497–504. DOI: 10.1007/s10450-010-9309-z.

Serafin J., Narkiewicz U., Morawski A.W. J. CO2 Util., 2017, vol. 18, pp. 73–79. DOI: 10.1016/j.jcou.2017.01.006.

Deng S., Wei H., Chen T. et al. Chem. Eng. J., 2014, vol. 253, pp. 46–54. DOI: 10.1016/j.cej.2014.04.115.

Creamer A.E., Gao B., Zhang M. Chem. Eng. J., 2014, vol. 249, pp. 174–179. DOI: 10.1016/j.cej.2014.03.105.

Tan X., Liu S., Liu Y. Bioresour Technol., 2017, vol. 227, pp. 359–372. DOI: 10.1016/j.biortech.2016.12.083.

Chen J., Shi X., Zhan Y. Appl. Surf. Sci., 2017, vol. 397, pp. 133–143. DOI: 10.1016/j.apsusc.2016.10.211.

Gao M., Ma Q., Lin Q. Appl. Surf. Sci., 2015, vol. 359, pp. 323–330. DOI: 10.1016/j.apsusc.2015.10.135.

Martini B.K., Daniel T.G., Corazza M.Z., de Carvalho A.E. J. Environ Chem. Eng., 2018, vol. 6, pp. 6669–6679. DOI: 10.1016/j.jece.2018.10.013.

Yakout S., Hassan M., El-Zaidy M. Bioresources, 2020, vol. 14, pp. 4560–4574.

León G., García F., Miguel B., Bayo J. Desalin Water Treat., 2016, vol. 57(36), pp. 17104–17117. DOI: 10.1080/19443994.2015.1072063.

Guo J., Lua A.C. Microporous and mesoporous materials, 1999, vol. 32, no. 1-2, pp. 111–117.

Hayashi J. et al. Microporous and Mesoporous Materials, 2002, vol. 55, pp. 63–68.

Nowicki P., Pietrzak R. Bioresource technology, 2010, vol. 101, pp. 5802–5807.

Adinata D., Daud W.M.A.W., Aroua M.K. Bioresource technology, 2007, vol. 98, pp. 145–149.

Guo Y., Rockstraw D.A. Bioresource Technology, 2007, vol. 98, pp. 1513–1521.

Ichcho S. et al. Journal of hazardous materials, 2005, vol. 118, pp. 45–51.

Karim M.M., Das A.K., Lee S.H. Analytica chimica acta, 2006, vol. 576, pp. 37–42.

Naidoo E.B., Pholosi A., Ofomaja A.E. Pure and Applied Chemistry, 2013, vol. 85, pp. 2209–2215.

Deniz F. Desalination and Water Treatment. 2013, vol. 51, pp. 4573–4581.

Behnamfard A., Alaei R., Chegni K., Veglio F. Desalination and Water Treatment, 2019, vol. 153, pp. 121–129.

Published
2023-10-02
How to Cite
1. Karabayeva M. I., Mirsalimova S. R., Salikhanova D. S., Ubaydullayeva N. N. ADSORPTION WATER TREATMENT WITH ADSORBENTS BASED ON VEGETABLE RAW MATERIALS // chemistry of plant raw material, 2023. № 3. P. 47-62. URL: http://journal.asu.ru/cw/article/view/12428.
Section
Reviews