ADSORPTION WATER TREATMENT WITH ADSORBENTS BASED ON VEGETABLE RAW MATERIALS
UDC 628.316.13
Abstract
Currently, the world of environmental protection through the disposal of industrial waste and their rational processing is one of the main problems at the global level, aimed at improving the well-being of the population. However, the rapid development of industrial enterprises is accompanied by the formation of a significant amount of various wastes, including wastewater. Wastewater treatment from various pollutants is important from an environmental and economic point of view. At the same time, the accumulation of plant waste is an unimportant problem. One of the solutions to this problem is the production of environmentally friendly adsorbents based on plant materials. Recent years The recovery of biomass and waste biomass in the last decade has attracted the attention of an increasing number of scientists. Activated carbon (AC), used to remove organic micro-pollutants in the world's wastewater treatment plants, is usually produced from non-renewable resources such as peat, lignite, coal, anthracite, wood materials, waste paper, leather industry and animal products that needs to be transported over long distances. The use of biomass as feedstock can be beneficial in terms of sustainability. The review is devoted to the analysis of publications in this field in recent years. The main areas of application of adsorbents based on pine cones are considered. Examples of the implementation of the production of an adsorbent based on plant wastes and their use for water purification from various chemicals are given.
Downloads
Metrics
References
Sharkov V.I., Kuybina N.I., Solov'yeva Yu.P., Pavlova T.A. Kolichestvennyy khimicheskiy analiz rastitel'nogo syr'ya. [Quantitative chemical analysis of plant raw materials]. Moscow, 1976, 72 p. (in Russ.).
Mirsalimova S.R., Salikhanova D.S., Karabayeva M.I. Universum: tekhnicheskiye nauki, 2021, no. 4 (85), pp. 24–26. (in Russ.).
Obolenskaya A.V., Yel'nitskaya Z.P., Leonovich A.A. Laboratornyye raboty po khimii drevesiny i tsellyulozy. [Labor-atory work on the chemistry of wood and cellulose]. Moscow, 1991, 310 p. (in Russ.).
Tian A., Xiaojun J., Qingyu L. Sep. Sci. Technol., 2020, vol. 55, pp. 1249–1259.
Kaur M., Kumari S., Sharma P. Biotechnol. Rep., 2019, vol. 25, e00410. DOI: 10.1016/j.btre.2019.e00410.
Adewuyi A., Pereira F.V. Beni-Suef Univ. J. Basic Appl. Sci., 2017, vol. 6(2), p. 118.
Khoshsang H., Ghaffarinejad A. J. Environ. Chem. Engin., 2018, vol. 6(5), p. 6021.
Vieira R.M., Vilela P.B., Becegato V.A., Paulino A.T. J. Environ. Chem. Engin., 2018, vol. 6, p. 2713.
Bowman N., Patel D., Sanchez A.X.U.W., Alsaffar A., Tiquia-Arashiro S.M. Appl. Microbiol. Biotechnol., 2018, vol. 102, p. 2391.
Chanthapon N., Sarkar S., Kidkhunthod P., Padungthon S. J. Chem. Engin., 2018, vol. 331, p. 545.
Ashrafi M., Bagherian G., Chamjangali M.A., Goudarzi N., Amin A.H. Mater. Res. Express., 2018, vol. 5, 056103. DOI: 10.1088/2053-1591/aac0c3.
Ashrafi M., Borzuie H., Bagherian G., Chamjangali M.A., Nikoofard H. Sep. Sci. Technol., 2020, vol. 55, p. 222.
Altundoğan H.S., Topdemir A., Çakmak M., Bahar N. J. Taiwan Inst. Chem. Eng., 2016, vol. 58, pp. 219–225.
Nguyen T.A.H., Ngo H.H., Guo W.S., Zhang J., Liang S., Yue Q.Y., Nguyen T.V. Bioresour. Technol., 2013, vol. 148, p. 574
Chen B., Liu Y., Chen S., Zhao X., Meng X., Pan X. J. Taiwan Inst. Chem. Eng., 2016, vol. 67, p. 191.
Kyzas G.Z., Siafaka P.I., Pavlidou E.G., Chrissafis K.J., Bikiaris D.N. Chem. Engin. J., 2015, vol. 259, p. 438.
Ghadamali B., Elham N., Mansour C., Motahare A. Journal of the Iranian Chemical Society, 2021, vol. 18, pp. 2369–2379. DOI: 10.1007/s13738-021-02196-x.
Kumar N.S., Asif M., Al-Hazzaa M.I. Environ. Sci. Pollut. Res. Int., 2018, vol. 25(22), pp. 21949–21960. DOI: 10.1007/s11356-018-2315-5.
Ramavandi B. Water Resour. Ind., 2014, vol. 6, pp. 36–50. DOI: 10.1016/j.wri.2014.07.001.
Mallevialle J., Bruchet A., Fiessinger F. Journal American Water Works Association, 1984, vol. 76, pp. 87–93. DOI: 10.1002/j.1551-8833.1984.tb05354.x.
Ndabigengesere A., Narasiah K.S., Talbot B.G. Water Res., 1995, vol. 29, pp. 703–710.
Raghuwanshi P.K., Mandloi M., Sharma A.J., Malviya H.S., Chaudhari S. Water Qual. Res. J. Can., 2002, vol. 37, pp. 745–756.
Diaz F.C., Rincon N., Escorihuela A., Fernandez N., Chacin E. Process Biochem., 1999, vol. 35, pp. 391–395.
Sciban M., Klasnja M., Antov M., Skrbic B. Bioresour. Technol., 2009, vol. 100, pp. 6639–6643.
Hussain S., Ghouri A.S., Ahmad A. Heliyon, 2019, vol. 5, e01500. DOI: 10.1016/j.heliyon.2019.e01500.
Ayoob S., Gupta A.K. Crit. Rev. Environ Sci. Technol., 2006, vol. 36, pp. 433–487. DOI: 10.1080/10643380600678112.
Ghosh A., Mukherjee K., Ghosh S.K., Saha B. Res. Chem. Intermed., 2013, vol. 39, pp. 2881–2915. DOI: 10.1007/s11164-012-0841-1.
Jha S.K., Mishra V.K., Sharma D.K., Damodaran T. Reviews of environmental contamination and toxicology. Springer, New York, 2011, vol. 211, pp. 121–142.
Meenakshi M.R.C. J. Hazard Mater., 2006, vol. 137, pp. 456–463. DOI: 10.1016/j. jhazmat.2006.02.024.
Cases A., Coll E. Proc. Second Int. Conf. New Insights Progress Chronic Kidney Dis., 2005, vol. 68, pp. 87–93. DOI: 10.1111/j.1523-1755.2005.09916.x.
National Research Council, Division on Earth and Life Studies, Board on Environmental Studies and Toxicology, Committee on Fluoride in Drinking Water. Fluoride in Drinking Water: A Scientific Review of EPA's Standards. Na-tional Academies Press, 2007, 530 p.
Singh P.P., Barjatiya M.K., Dhing S. Urol. Res., 2001, vol. 29, pp. 238–244. DOI: 10.1007/s002400100192.
Li Y., Li X., Wei S. J. West China Univ. Med. Sci., 1994, vol. 25, pp. 188–191.
Mullenix P.J., Denbesten P.K., Schunior A., Kernan W.J. Neurotoxicol Teratol., 1995, vol. 17, pp. 169–177. DOI: 10.1016/0892-0362(94)00070-T.
Susheela A.K., Toteja G. Indian J. Med. Res., 2018, vol. 148, p. 539.
Gupta I.P., Das T.K., Susheela A.K. J. Gastroenterol Hepatol., 1992, vol. 7, pp. 355–359. DOI: 10.1111/j.1440-1746.1992.tb009 96.x.
Jagtap S., Yenkie M.K., Labhsetwar N., Rayalu S. Chem. Rev., 2012, vol. 112, pp. 2454–2466. DOI: 10.1021/cr2002855.
Alagumuthu G., Rajan M. Chem. Eng. J., 2010, vol. 158, pp. 451–457. DOI: 10.1016/j.cej.2010.01.017.
Araga R., Soni S., Sharma C.S. J. Environ Chem. Eng., 2017, vol. 5, pp. 5608–5616. DOI: 10.1016/j.jece.2017.10.023.
Delgadillo-Velasco L., Hernández-Montoya V., Cervantes F.J. J. Environ Manage., 2017, vol. 201, pp. 277–285. DOI: 10.1016/j.jenvm an.2017.06.038.
Ravulapalli S., Kunta R. J. Fluor. Chem., 2017, vol. 193, pp. 58–66. DOI: 10.1016/j.jfuc hem.2016.11.013.
Sivasankar V., Rajkumar S., Murugesh S., Darchen A. Chem. Eng. J., 2012, vol. 197, pp. 162–172. DOI: 10.1016/j.cej.2012.05.023.
Talat M. Groundw Sustain Dev., 2018, vol. 7, pp. 48–55. DOI: 10.1016/j.gsd.2018.03.001.
Thakur R.S., Katoch S.S., Modi A. SN Applied Sciences, 2020, vol. 2(8), 1407. DOI: 10.1007/s42452-020-03207-x.
Ali H.A., Algon A.A.A., Chyad S.S., Al-Mulla E.A. Nano Biomed. Eng J., 2017, vol. 9(4), pp. 285–290.
Chyad T.F., Al-Hamadani R.F.C., Hammood Z.A., Ali G.A. Materials Today: Proceedings, 2023, vol. 80, pp. 2706–2711. DOI: 10.1016/j.matpr.2021.07.016.
Naghipour D., Amouei A., Taher Ghasemi K., Taghavi K. Environmental Health Engineering and Management, 2019, vol. 6(2), pp. 81–88. DOI: 10.15171/EHEM.2019.09.
Dawood S., Sen T.K., Phan C. Bioresource Technology, 2017, vol. 246, pp. 76–81. DOI: 10.1016/j.biortech.2017.07.019.
Dawood S., Sen T.K. Water Research, 2012, vol. 46, pp. 1933–1946. DOI: 10.1016/j.watres.2012.01.009.
Kakiye strany ispytyvayut nedostatok presnoy vody [Which countries are experiencing a lack of fresh water]. URL: https://magictemple.ru/kakie-strany-ispytyvajut-nedostatok-presnoj-vody/. (in Russ.).
Karabayeva M.I., Mirsalimova S.R., Salikhanova D.S. Uzbekskiy khimicheskiy zhurnal, 2021, no. 5, pp. 50–55. (in Russ.).
Karabayeva M.I. ACADEMICIA: An International Multidisciplinary Research Journal, 2020, vol. 10, no. 11, pp. 442–445.
Ofomaja A.E., Naidoo E.B., Modise S.J. Journal of Environmental Management, 2010, vol. 91, no. 8, pp. 1674–1685.
Amar M.B., Walha K., Salvadó V. Adsorption Science and Technology, 2021, 6678530. DOI: 10.1155/2021/6678530.
Geçgel Ü., Kolanclar H. Natural Product Research, 2012, vol. 26, pp. 659–664.
Kaya N., Uzun Z.Y. Biomass Conversion and Biorefinery, 2021, vol. 11, pp. 1067–1083.
Zhang X., Zhang S., Yang H. Energy, 2015, vol. 91, pp. 903–910. DOI: 10.1016/j.energy.2015.08.028.
Manyà J.J., González B., Azuara M., Arner G. Chem. Eng. J., 2018, vol. 345, pp. 631–639. DOI: 10.1016/j.cej.2018.01.092.
Matabosch Coromina H., Walsh D., Mokaya R. J. Mater. Chem. A, 2016, vol. 4, pp. 280–289. DOI: 10.1039/C5TA09202G.
Li D., Ma T., Zhang R. Fuel, 2015, vol. 139, pp. 68–70. DOI: 10.1016/j.fuel.2014.08.027.
Vargas D.P., Giraldo L., Silvestre-Albero J., Moreno-Piraján J.C. Adsorption, 2011, vol. 17, pp. 497–504. DOI: 10.1007/s10450-010-9309-z.
Serafin J., Narkiewicz U., Morawski A.W. J. CO2 Util., 2017, vol. 18, pp. 73–79. DOI: 10.1016/j.jcou.2017.01.006.
Deng S., Wei H., Chen T. et al. Chem. Eng. J., 2014, vol. 253, pp. 46–54. DOI: 10.1016/j.cej.2014.04.115.
Creamer A.E., Gao B., Zhang M. Chem. Eng. J., 2014, vol. 249, pp. 174–179. DOI: 10.1016/j.cej.2014.03.105.
Tan X., Liu S., Liu Y. Bioresour Technol., 2017, vol. 227, pp. 359–372. DOI: 10.1016/j.biortech.2016.12.083.
Chen J., Shi X., Zhan Y. Appl. Surf. Sci., 2017, vol. 397, pp. 133–143. DOI: 10.1016/j.apsusc.2016.10.211.
Gao M., Ma Q., Lin Q. Appl. Surf. Sci., 2015, vol. 359, pp. 323–330. DOI: 10.1016/j.apsusc.2015.10.135.
Martini B.K., Daniel T.G., Corazza M.Z., de Carvalho A.E. J. Environ Chem. Eng., 2018, vol. 6, pp. 6669–6679. DOI: 10.1016/j.jece.2018.10.013.
Yakout S., Hassan M., El-Zaidy M. Bioresources, 2020, vol. 14, pp. 4560–4574.
León G., García F., Miguel B., Bayo J. Desalin Water Treat., 2016, vol. 57(36), pp. 17104–17117. DOI: 10.1080/19443994.2015.1072063.
Guo J., Lua A.C. Microporous and mesoporous materials, 1999, vol. 32, no. 1-2, pp. 111–117.
Hayashi J. et al. Microporous and Mesoporous Materials, 2002, vol. 55, pp. 63–68.
Nowicki P., Pietrzak R. Bioresource technology, 2010, vol. 101, pp. 5802–5807.
Adinata D., Daud W.M.A.W., Aroua M.K. Bioresource technology, 2007, vol. 98, pp. 145–149.
Guo Y., Rockstraw D.A. Bioresource Technology, 2007, vol. 98, pp. 1513–1521.
Ichcho S. et al. Journal of hazardous materials, 2005, vol. 118, pp. 45–51.
Karim M.M., Das A.K., Lee S.H. Analytica chimica acta, 2006, vol. 576, pp. 37–42.
Naidoo E.B., Pholosi A., Ofomaja A.E. Pure and Applied Chemistry, 2013, vol. 85, pp. 2209–2215.
Deniz F. Desalination and Water Treatment. 2013, vol. 51, pp. 4573–4581.
Behnamfard A., Alaei R., Chegni K., Veglio F. Desalination and Water Treatment, 2019, vol. 153, pp. 121–129.
Copyright (c) 2023 chemistry of plant raw material
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.