COMPARATIVE ANALYSIS OF THE ELEMENTAL COMPOSITION OF ORGANS OF PROMISING SPECIES OF THE GENUS IRIS L. (IRIDACEAE)
UDK 581.192:582.579.2:635.9
Abstract
Plants of the genus Iris L. are promising medicinal raw materials with significant biological and pharmacological activity. The quality of plant raw materials depends on the accumulation and distribution of potentially hazardous chemical elements in the plant body. The aim of this work was a comparative study of the accumulation and transfer of elements through the organs of plants of the genus Iris L. (Iridaceae). The content of As, Cd, Cr, Cu, Mn, Ni, and Pb in different parts of I. orientalis, I. pseudacorus, I. sibirica and I. spuria plants was analyzed by atomic absorption. It has been established that in the absence of soil pollution, irises accumulate arsenic in concentrations exceeding the maximum allowable. The accumulation of chromium in the raw material was also above the maximum allowable concentration for a number of study options. The efficiency of element transfer from the soil to the root system varied significantly (bioaccumulation factor 0.2–4.4). Iris rhizomes absorbed nickel most actively. The assimilation ability of the roots is also clearly expressed in relation to Pb, As, Cr, Cu, Mn. Depending on the element, accumulation in leaves is species-specific. The carrying capacity of the peduncle is most pronounced in I. sibirica, the barrier capacity is most pronounced in I. orientalis. Various types of translocation of elements in organs were revealed: acropetal, uniform, basipetal. All studied species are characterized by acropetal distribution of Pb (translocation factor >1) and uniform distribution of Mn. The location of Cd may vary depending on the species. Cu is concentrated in the roots (I. orientalis, I. sibirica, I. spuria) or evenly distributed (I. pseudacorus). The revealed patterns of accumulation and distribution of elements in the organs of plants of the genus Iris make it possible to carry out a prognostic assessment of the quality of raw materials to obtain safe products.
Downloads
Metrics
References
2. Mothana R.A., Abdo S.A., Hasson S., Althawab F.M., Alaghbari S.A., Lindequist U. Antimicrobial, antioxidant and cytotoxic activities and phytochemical screening of some yemeni medicinal plants // Evidence-based Complementary and Alternative Medicine. 2010. Vol. 7 (3). Pp. 323−330. DOI: 10.1093/ecam/nen004.
3. Тихомирова Л.И., Базарнова Н.Г., Микушина И.В., Долганова З.В. Фармаколого-биохимическое обоснование практического использования некоторых представителей рода Iris L. (обзор) // Химия растительного сырья. 2015. № 3. С. 25−34. DOI: 10.14258/jcprm.201503837.
4. Singab A.N., Ayoub I.M., El-Shazly M., Korinek M., Wu T.-Y., Cheng Y.-B., Chang F.-R., Wu Y.-C. Shedding the light on Iridaceae: Ethnobotany, phytochemistry and biological activity // Industrial Crops and Products. 2016. Vol. 92. Pp. 308−335. DOI: 10.1016/j.indcrop.2016.07.040.
5. Kostić A.Ž., Gašić U.M., Pešić M.B., Stanojević S.P., Barać M.B., Mačukanović-Jocić M.P., Avramov S.N., Tešić Ž.L. Phytochemical analysis and total antioxidant capacity of rhizome, above-ground vegetative parts and flower of three Iris species // Chem. Biodivers. 2019. Vol. 16 (3). P. 1800565. DOI: 10.1002/cbdv.201800565.
6. Khatib S., Faraloni C., Bouissane L. Exploring the Use of Iris Species: Antioxidant Properties, Phytochemistry, Medicinal and Industrial Applications // Antioxidants. 2022. Vol. 11 (3). P. 526. DOI: 10.3390/antiox11030526.
7. Singab A.N. Flavonoids from Iris spuria (Zeal) cultivated in Egypt // Arch. Pharm. Res. 2004. Vol. 27, No. 10. Pp. 1023−1028. DOI: 10.1007/BF02975425.
8. Farag S.F., Kimura Y., Ito H., Takayasu J., Tokuda H., Hatano T. New isoflavone glycosides from Iris spuria L. (Calizona) cultivated in Egypt // J. Nat. Med. 2009. Vol. 63. Pp. 91−95. DOI: 10.1007/s11418-008-0291-7.
9. Roger B., Fernandez X., Jeannot V., Chahboun J. An alternative method for irones quantification in iris rhizomes using headspace solid-phase microextraction // Phytochem. Anal. 2010. Vol. 21, No. 5. Pp. 483−488. DOI: 10.1002/pca.1223. PMID: 20931625.
10. Kaššák P. Total flavonoids and phenolics content of the chosen genus Iris species // Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. 2012. Vol. LX, No. 8. Pp.119−126.
11. Mizuno T., Yabuy T., Sasaki N., Iwashina T. Phenolic compounds, including novel C-glycosylflavone, from the flowers of the tall bearded Iris cultivar ‘Victoria Falls’ // Nat. Prod. Commun. 2012. Vol. 7, No. 12. Pp. 1591−1594.
12. Базарнова Н.Г., Ильичева Т.Н., Тихомирова Л.И., Синицына А.А. Скрининг химического состава и биологической активности Iris sibirica L. Сорт Cambridge // Химия растительного сырья. 2016. № 3. С. 49−57. DOI:10.14258/jcprm.2016031227.
13. Mykchailenko O.O., Kovalyov M.V. Phenolic compounds of the genus Iris plants (Iridaceae) // Ceska Slov. Farm. 2016. Vol. 65, No. 2. Pp. 70−77.
14. Седельникова Л.Л., Кукушкина Т.А. Содержание некоторых групп соединений в листьях и корневищах Iris hybrida hort. Сорт Coronation // Химия растительного сырья. 2018. № 2. С. 131−136. DOI: 10.14258/jcprm.2018023476.
15. Khatib S., Faraloni C., Bouissane L. Exploring the Use of Iris Species: Antioxidant Properties, Phytochemistry, Medicinal and Industrial Applications // Antioxidants. 2022. Vol. 11, No. 3. P. 526. DOI: 10.3390/antiox11030526.
16. Hazra M., Avishek K., Pathak G. Phytoremedial Potential of Typha latifolia, Eichornia crassipes and Monochoria hastata found in contaminated water bodies across Ranchi City (India) // Int. J. Phytoremediation. 2015. Vol. 17, No. 9. Pp. 835−840. DOI: 10.1080/15226514.2014.964847.
17. Седельникова Л.Л., Чанкина О.В. Содержание тяжелых металлов в вегетативных органах красоднева гибридного (Hemerocallis hybrida) в урбанизированной среде // Вестник КрасГАУ. 2016. № 2 (113). С. 34−43.
18. Базарнова Н.Г., Тихомирова Л.И., Синицына А.А., Афанасенкова И.В. Сравнительный анализ химического состава растительного сырья Iris sibirica L. // Химия растительного сырья. 2017. № 4. С. 137−144. DOI: 10.14258/jcprm.2017042741.
19. Zhou Y.Q., Huang S.Z., Yu S.L., Gu J.G., Zhao J.Z., Han Y.L., Fu J.J. The physiological response and sub-cellular localization of lead and cadmium in Iris pseudacorus L. // Ecotoxicology. 2010. Vol. 19, No. 1. Pp. 69−76. DOI: 10.1007/s10646-009-0389-z.
20. Blaylock M.J., Salt D.E., Dushenkov S., Zakharova O., Gussman C., Kapulnik Y., Ensley B.D., Raskin I. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents // Environ Sci. Technol. 1997. Vol. 31. Pp. 860–865.
21. Ali H., Khan E., Sajad M.A. Phytoremediation of heavy metals − Concepts and applications // Chemosphere. 2013. Vol. 91. Pp. 869–881.
22. Предельно допустимые концентрации (ПДК) химических веществ в почве: Гигиенические нормативы. М., 2006. 15 с.
23. Обухов А.И. Методические основы разработки ПДК тяжелых металлов и классификация почв по загрязнению // Система методов изучения почвенного покрова, деградированного под влиянием химического загрязнения. М., 1992. С. 13–20.
24. Гигиенические нормативы 2.1.7.2041-06. Предельно допустимые концентрации (ПДК) химических веществ в почве. М., 2006.
25. Пименова Е.В. Нормирование качества окружающей среды и сельскохозяйственной продукции. ФГОУ ВПО Пермская ГСХА. Пермь, 2009. 74 с.
26. Гигиенические требования безопасности и пищевой ценности пищевых продуктов. Сан ПиН 2.3.2 1078-01 от 06.11.2001.
27. Государственная фармакопея Российской Федерации. Определение содержания тяжелых металлов и мышьяка в лекарственном растительном сырье и лекарственных растительных препаратах. XIV изд. Т. II. М., 2018.
28. Ильин В.Б. Тяжелые металлы в системе почва-растение. Новосибирск, 1991. 151 с.
29. Mishra V.K., Tripathi B.D. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes // Bioresource Technology. 2008. Vol. 99, No. 15. Pp. 7091–7097. DOI: 10.1016/j.biortech.2008.01.002.
30. Caldelas C., Araus J.L., Febrero A., Bort J. Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L. // Acta. Physiol. Plant. 2012. Vol. 34. Pp. 1217–1228. DOI: 10.1007/s11738-012-0956-4.
Copyright (c) 2024 chemistry of plant raw material
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.