INFLUENCE OF ULTRASOUND ON THE FUNCTIONAL PROPERTIES OF PLANT PROTEINS. REVIEW OF THE SUBJECT FIELD

UDC 664

Keywords: vegetable protein, modification, ultrasound, functional properties, viscosity, solubility, hydrophobicity, denaturation, secondary structure

Abstract

Introduction. Due to the increased interest of consumers in vegetarianism, plant proteins have become the focus of attention of the scientific community, the study of which is aimed at improving their nutritional and functional properties. The purpose of the article is to review the results of scientific research on the effect of ultrasonic technology on the physicochemical and functional properties of plant proteins.

Materials and methods. A search for scientific literature in Englishb and Russian on the study of the influence of ultrasonic technologies on the physicochemical and functional properties of plant proteins was carried out in the bibliographic databases "Scopus", "Web of Science", as well as other sources. The period 2010–2023 was adopted as the time frame for the review of scientific publications. When performing the work, scientific methods were used: searching and screening scientific literature, extracting data, analyzing, systematizing and summarizing them.

Results and its discussion. Numerous scientific studies have shown that ultrasound can cause significant changes in plant proteins, including denaturation and modification of their structures. These modifications can lead to improvements in the functional properties of proteins, such as water holding capacity, solubility, and viscosity. High-intensity ultrasound technology opens up great prospects for modifying the physicochemical properties of plant proteins. This method offers benefits such as energy efficiency, shorter processing times, and reduced or eliminated use of organic solvents. However, the use of high-intensity ultrasound in the processing of plant proteins also has certain disadvantages, including protein denaturation, the need for specialized equipment, and limitations in widespread industrial use.

Conclusions. Ultrasound is a promising technology for the modification of plant proteins, opening new opportunities for the development of innovative food ingredients and food products. The materials of this scientific review can be used for further research and practical application of ultrasound in the food industry for the effective use of plant proteins.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Leonid Cheslavovich Burak , LLC "BELROSAKVA"

candidate of technical sciences, director

Alexander Nikolaevich Sapach, LLC "BELROSAKVA"

chemical engineer

References

Shokri S., Javanmardi F., Mohammadi M., Mousavi Khaneghah A. Ultrason Sonochem, 2022, vol. 83, 105938. https://doi.org/10.1016/j.ultsonch.2022.105938.

Joshi S., Bathla S., Singh A., Sharma M., Stephen Inbaraj B., Sridhar K. International Journal of Food Science & Technology, 2023, vol. 58, pp. 785–794. https://doi.org/10.1111/ijfs.16233.

Valero-Cases E., Frutos M.J., Pérez-Llamas F. International Journal of Food Science & Technology, 2023, vol. 58(5), pp. 2325–2335. https://doi.org/10.1111/ijfs.16361.

Gharibzahedi S.M.T., Smith B. Trends in Food Science & Technology, 2020, vol. 98, pp. 107–116. https://doi.org/10.1016/j.tifs.2020.02.002.

Su J., Cavaco-Paulo A. Ultrasonics sonochemistry, 2021, vol. 1(76), 105653. https://doi.org/10.1016/j.ultsonch.2021.105653.

Ampofo J., Ngadi M. Ultrasonics Sonochemistry, 2022, vol. 84, 105955. https://doi.org/10.1016/j.ultsonch.2022.105955.

Zou Y., Wang L., Li P. et al. Process Biochemistry, 2017, vol. 52, pp. 174–182. https://doi.org/10.1016/j.procbio.2016.09.027.

Magalhães I.S., Guimarães A.D.B., Tribst A.A.L., Oliveira E.B.D., Leite Júnior B.R.D.C. Food Research Internation-al, 2022, vol. 157, 111310. https://doi.org/10.1016/j.foodres.2022.111310.

Pacheco A.F.C., De Souza L.B., Paiva P.H.C. Applied Food Research, 2023, vol. 3, 100281. https://doi.org/10.1016/j.afres.2023.100281.

Alarcon-Rojo A.D., Carrillo-Lopez L.M., Reyes-Villagrana R., Huerta-Jiménez M., Garcia-Galicia I.A. Ultrasonics Sonochemistry, 2018, vol. 55, pp. 369–382. https://doi.org/10.1016/j.ultsonch.2018.09.016.

Burak L. Ch., Yablonskaya V.V., Sapach A.N. Modern Science and Innovations, 2023, vol. 3, no. 43, pp. 141–155. https://doi.org/10.37493/2307-910X.2023.3.13.

Amiri A., Sharifian P., Soltanizadeh N. International journal of biological macromolecules, 2018, vol. 111, pp. 139–147. https://doi.org/10.1016/j.ijbiomac.2017.12.167.

Bhargava N., Mor R.S, Kumar K., Sharanagat V.S. Ultrasonics sonochemistry, 2021, vol. 70, 105293. https://doi.org/10.1016/j.ultsonch.2020.105293.

Burak L. Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy, 2022, no. 9, pp. 75–85. https://doi.org/10.17513/mjpfi.13444. (in Russ.).

Bezerra J.D.A., Sanches E.A., Lamarão C.V., Campelo P.H. International Journal of Food Science & Technology, 2022, vol. 57, pp. 4015–4026. https://doi.org/10.1111/ijfs.15774.

Sha L., Xiong Y.L. Food Research International, 2022, vol. 156, 111179. https://doi.org/10.1016/j.foodres.2022.111179.

Hussain M., Qayum A., Zhang X. et al. LWT, 2021, vol. 148, 111747. https://doi.org/10.1016/j.lwt.2021.111747.

Figueroa-González J.J., Lobato-Calleros C., Vernon-Carter E.J., Aguirre-Mandujano E., Alvarez-Ramirez J., Martínez-Velasco A. LWT, 2022, vol. 153, 112561. https://doi.org/10.1016/j.lwt.2021.112561.

Jin J., Okagu O.D., Yagoub A.E.A., Udenigwe C.C. Ultrasonics Sonochemistry, 2021, vol. 70, 105348. https://doi.org/10.1016/j.ultsonch.2020.105348.

Ngo N.T.T., Shahidi F. Food Production. Processing and Nutrition, 2021, vol. 3, p. 31. https://doi.org/10.1186/s43014-021-00076-8.

Cui L., Kimmel J., Zhou L., Chen B., Rao J. Food Hydrocolloids, 2021, vol. 113, 106534. https://doi.org/10.1016/j.foodhyd.2020.106534.

Li L., Zhou Y., Teng F. et al. International Journal of Food Science & Technology, 2020, vol. 55, pp. 1637–1647. https://doi.org/10.1111/ijfs.14428.

Lv S., Taha A., Hu H., Lu Q., Pan S. Molecules, 2019, vol. 24, 4260. https://doi.org/10.3390/molecules24234260.

Flores-Jiménez N.T., Ulloa J.A., Silvas J.E.U. et al. Food Research International, 2019, vol. 121, pp. 947–956. https://doi.org/10.1016/j.foodres.2019.01.025.

Dabbour M., He R., Ma H., Musa A. Journal of Food Process Engineering, 2018, vol. 41, 12799. https://doi.org/10.1111/jfpe.12799.

Martínez-Velasco A., Lobato-Calleros C., Hernández-Rodríguez B.E., Román-Guerrero A., Alvarez-Ramirez J., Vernon-Carter E.J. Ultrasonics Sonochemistry, 2018, vol. 44, pp. 97–105. https://doi.org/10.1016/j.ultsonch.2018.02.007.

Nazari B., Mohammadifar M.A., Shojaee-Aliabadi S., Feizollahi E., Mirmoghtadaie L. Ultrasonics Sonochemistry, 2018, vol. 41, pp. 382–388. https://doi.org/10.1016/j.ultsonch.2017.10.002.

Resendiz-Vazquez J.A., Ulloa J.A., Urías-Silvas J.E. et al. Ultrasonics Sonochemistry, 2017, vol. 37, pp. 436–444. https://doi.org/10.1016/j.ultsonch.2017.01.042.

Zhang Q.-T., Tu Z.-C., Xiao H. et al. Food and Bioproducts Processing, 2014, vol. 92, pp. 30–37. https://doi.org/10.1016/j.fbp.2013.07.006.

Zhang P., Hu T., Feng S. et al. Ultrasonics Sonochemistry, 2016, vol. 29, pp. 380–387. https://doi.org/10.1016/j.ultsonch.2015.10.014.

Yanova M.A. Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta, 2015, no. 40, pp. 53–56. (in Russ.).

Akinfeyeva A.V., Yegorova Ye.Yu., Tsyganok S.N. Yuzhno-Sibirskiy nauchnyy vestnik, 2020, no. 2(30), pp. 73–79. https://doi.org/10.26456/vtchem2021.4.18. (in Russ.).

Shaginova L.O., Domoroshchenkova M.L., Dem'yanenko T.F., Krylova I.V. XI Kongress molodykh uchonykh: sbornik nauchnykh trudov, Sankt-Peterburg, 4–8 aprelya 2022 goda. [XI Congress of Young Scientists: collection of scientific papers, St. Petersburg, April 4–8, 2022]. St. Petersburg, 2022, pp. 576–581. (in Russ.).

Ozhimkova Ye.V., Orlov V.V. Vestnik Tverskogo gosudarstvennogo universiteta. Seriya: Khimiya, 2021, no. 4(46), pp. 161–169. https://doi.org/10.26456/vtchem2021.4.18. (in Russ.).

Tiwari B.K. TrAC Trends in Analytical Chemistry, 2015, vol. 71, pp. 100–109. https://doi.org/10.1016/j.ultsonch.2020.105202.

Zuñiga-Salcedo M.R., Ulloa J.A., Bautista-Rosales P.U. et al. Italian Journal of Food Science, 2019, vol. 31, pp. 591–603. https://doi.org/10.14674/IJFS-1440.

Rodríguez Patino J.M., Pilosof A.M.R. Food Hydrocolloids, 2011, vol. 25, pp. 1925–1937. https://doi.org/10.1016/j.foodhyd.2011.02.023.

Sha L., Koosis A.O., Wang Q., True A.D., Xiong Y.L. Food Chemistry, 2021, vol. 350, 129271. https://doi.org/10.1016/j.foodchem.2021.129271.

Yan S., Xu J., Zhang S., Li Y. LWT, 2021, vol. 142, 110881. https://doi.org/10.1016/j.lwt.2021.110881.

Zhang T., Wang J., Feng J. et al. Ultrasonics Sonochemistry, 2022, vol. 86, 106031. https://doi.org/10.1016/j.ultsonch.2022.106031.

Khan Z.S., Sodhi N.S., Dhillon B., Dar B., Bakshi R.A., Shah S.F. Journal of Food Measurement and Characteriza-tion, 2021, vol. 15, pp. 4371–4379. https://doi.org/10.1007/s11694-021-01020-7.

de Oliveira A.P.H., Omura M.H., Barbosa É.D.A.A. et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, vol. 603, 125156. https://doi.org/10.1016/j.colsurfa.2020.125156.

Jiang Q., Jin X., Lee S.-J., Yao S. Journal of Molecular Graphics and Modelling, 2017, vol. 76, pp. 379–402. https://doi.org/10.1016/j.jmgm.2017.07.015.

Wang J., Wang J., Kranthi Vanga S., Raghavan V. Ultrasonics Sonochemistry, 2021, vol. 71, 105409. https://doi.org/10.1016/j.ultsonch.2020.105409.

Frydenberg R.P., Hammershøj M., Andersen U., Greve M.T., Wiking L. Food Chemistry, 2016, vol. 192, pp. 415–423. https://doi.org/10.1016/j.foodchem.2015.07.037.

Tian R., Feng J., Huang G. et al. Ultrasonics Sonochemistry, 2020, vol. 68, 105202. https://doi.org/10.1016/j.ultsonch.2020.105202.

Chandrapala J., Zisu B., Palmer M., Kentish S., Ashokkumar M. Ultrasonics Sonochemistry, 2011, vol. 18, pp. 951–957. https://doi.org/10.1016/j.ultsonch.2010.12.016.

Vanga S.K., Wang J., Orsat V., Raghavan V. Food Research International, 2020, vol. 137, 109523. https://doi.org/10.1016/j.foodres.2020.109523.

Kadkhodaee R., Povey M.J.W. Ultrasonics Sonochemistry, 2008, vol. 15, pp. 133–142. https://doi.org/10.1016/j.ultsonch.2007.02.005.

Kang D., Zou Y., Cheng Y., Xing L., Zhou G., Zhang W. Ultrasonics Sonochemistry, 2016, vol. 33, pp. 47–53. https://doi.org/10.1016/j.ultsonch.2016.04.024.

Abadía-García L., Castaño-Tostado E., Ozimek L., Romero-Gómez S., Ozuna C., Amaya-Llano S.L. Innovative Food Science & Emerging Technologies, 2016, vol. 37, pp. 84–90. https://doi.org/10.1016/j.ifset.2016.08.010.

Sengar A.S., Thirunavookarasu N., Choudhary P. et al. Applied Food Research, 2022, vol. 2, 100219. https://doi.org/10.1016/j.afres.2022.100219.

Aiello G., Pugliese R., Rueller L. et al. Food, 2021, vol. 10, 562. https://doi.org/10.3390/foods10030562.

Cui Q., Wang L., Wang G., Zhang A., Wang X., Jiang L. LWT, 2021, vol. 142, 110979. https://doi.org/10.1016/j.lwt.2021.110979.

Zhu Z., Zhu W., Yi J. et al. Food Research International, 2018, vol. 106, pp. 853–861. https://doi.org/10.1016/j.foodres.2018.01.060.

Li W., Li S., Hu Y. et al. Food Science and Human Wellness, 2019, vol. 8, pp. 283–291. https://doi.org/10.1016/j.fshw.2019.05.004.

Jin J., Okagu O.D., Yagoub A.E.A., Udenigwe C.C. Ultrasonics Sonochemistry, 2021, vol. 70, 105348. https://doi.org/10.1016/j.ultsonch.2020.105348.

Zhao C., Chu Z., Miao Z. et al. Food Bioscience, 2021, vol. 39, 100827. https://doi.org/10.1016/j.fbio.2020.100827.

Xiong T., Xiong W., Ge M., Xia J., Li B., Chen Y. Food Research International, 2018, vol. 109, pp. 260–267. https://doi.org/10.1016/j.foodres.2018.04.044.

Kalla-Bertholdt A.-M., Baier A.K., Rauh C. Foods, 2023, vol. 12, 3160. https://doi.org/10.3390/foods12173160.

Loushigam G., Shanmugam A. Ultrasonics Sonochemistry, 2023, vol. 97, 106448. https://doi.org/10.1016/j.ultsonch.2023.106448.

Yakovchenko N.V., Popova N.V. Vestnik YuUrGU. Seriya «Pishchevyye i biotekhnologii», 2023, vol. 11, no. 1, pp. 46–54. https://doi.org/10.14529/food230105.

Li R., Xiong Y.L. LWT, 2021, vol. 149, 111861. https://doi.org/10.1016/j.lwt.2021.111861.

Li J., Dai Z., Che Z., Hao Y., Wang, S., Mao X. Food Hydrocolloids, 2023, vol. 135, 108188. https://doi.org/10.1016/j.foodhyd.2022.108188.

Biswas B., Sit N. Journal of Food Science and Technology, 2020, vol. 57, pp. 2070–2078. https://doi.org/10.1007/s13197-020-04241-8.

Mir N.A., Riar C.S., Singh S. Ultrasonics Sonochemistry, 2019, vol. 58, 104700. https://doi.org/10.1016/j.ultsonch.2019.104700.

Malik M.A., Sharma H.K., Saini C.S. Ultrasonics Sonochemistry, 2017, vol. 39, pp. 511–519. https://doi.org/10.1016/j.ultsonch.2017.05.026.

Shen X., Fang T., Gao F., Guo M. Food Hydrocolloids, 2017, vol. 63, pp. 668–676. https://doi.org/10.1016/j.foodhyd.2016.10.003.

Shen X., Zhao C., Guo M. Ultrasonics Sonochemistry, 2017, vol. 39, pp. 810–815. https://doi.org/10.1016/j.ultsonch.2017.05.039.

Xu G., Kang J., You W. et al. Food Hydrocolloids, 2023, vol. 139, 108566. https://doi.org/10.1016/j.foodhyd.2023.108566.

Yücetepe A., Saroğlu Ö., Özçelik B. Journal of Food Science and Technology, 2019, vol. 56, pp. 3282–3292. https://doi.org/10.1007/s13197-019-03796-5.

Omura M.H., De Oliveira A.P.H., Soares L.D.S. et al. Food Hydrocolloids, 2021, vol. 113, 106457. https://doi.org/10.1016/j.foodhyd.2020.106457.

Wang R., Wang L.-H., Wen Q.-H. et al. Food Hydrocolloids, 2023, vol. 134, 108049. https://doi.org/10.1016/j.foodhyd.2022.108049.

Yanjun S., Jianhang C., Shuwen Z. et al. Journal of Food Engineering, 2014, vol. 124, pp. 11–18. https://doi.org/10.1016/j.jfoodeng.2013.09.013.

Sheng L., Wang Y., Chen J., Zou J., Wang Q., Ma M. Food Research International, 2018, vol. 108, pp. 604–610. https://doi.org/10.1016/j.foodres.2018.04.007.

Bi C., Chi S., Zhou T. et al. Food Research International, 2022, vol. 159, 111474. https://doi.org/10.1016/j.foodres.2022.111474.

Lo B., Kasapis S., Farahnaky A. Food Hydrocolloids, 2022, vol. 124, 107345. https://doi.org/10.1016/j.foodhyd.2021.107345.

Hu H., Wu J., Li-Chan E.C.Y. et al. Food Hydrocolloids, 2018, vol. 30, pp. 647–655. https://doi.org/10.1016/j.foodhyd.2012.08.001.

Jiang S., Ding J., Andrade J. et al. Ultrasonics Sonochemistry, 2017, vol. 38, pp. 835–842. https://doi.org/10.1016/j.ultsonch.2017.03.046.

Lafarga T., Álvarez C., Bobo G., Aguiló-Aguayo. LWT, 2018, vol. 98, pp. 106–112. https://doi.org/10.1016/j.lwt.2018.08.033.

Khatkar A.B., Kaur A., Khatkar S.K. LWT, 2020, vol. 132, 109781. https://doi.org/10.1016/j.lwt.2020.109781.

Mao C., Wu J., Zhang X., Ma F., Cheng Y. Food, 2020, vol. 9, 1908. https://doi.org/10.3390/foods9121908.

Pan M., Xu F., Wu Y. et al. Ultrasonics Sonochemistry, 2020, vol. 67, 105136. https://doi.org/10.1016/j.ultsonch.2020.105136.

Akharume F., Adedeji A. Journal of Food Measurement and Characterization, 2023, vol. 17, pp. 178–186. https://doi.org/10.1007/s11694-022-01619-4.

Thalía Flores-Jiménez N., Armando Ulloa J., Esmeralda Urías-Silvas J., Carmen Ramírez-Ramírez J., Ulises Bautista-Rosales P., Gutiérrez-Leyva R. Ultrason Sonochem., 2022, vol. 84, 105976. https://doi.org/10.1016/j.ultsonch.2022.105976.

Prakash S., Bhandari B., Gaiani C. Engineering Plant-Based Food Systems. London, UK: Academic Press, 2022.

Published
2024-11-02
How to Cite
1. Burak L. C., Sapach A. N. INFLUENCE OF ULTRASOUND ON THE FUNCTIONAL PROPERTIES OF PLANT PROTEINS. REVIEW OF THE SUBJECT FIELD // chemistry of plant raw material, 2024. № 4. P. 5-23. URL: http://journal.asu.ru/cw/article/view/13599.
Section
Reviews