ISOLATION AND STUDY OF THE COMPOSITION OF PROANTHOCYANIDINS FROM INNER BARK OF BIRCH BETULA PENDULA ROTH

UDC 54.05:547.972

  • Alexander Vladimirovich Levdansky Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS" Email: alexsander.l@mail.ru
  • Natalia Viktorovna Garyntseva Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS"; Krasnoyarsk State Agrarian University Email: garyntseva@icct.ru
  • Vladimir Alexandrovich Levdansky Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS" Email: vlevdanskij@mail.ru
Keywords: birch inner bark, extraction, ethyl acetate, proanthocyanidins, procyanidin, prodelfinidin, gallic acid

Abstract

A comparative analysis of the yields of proanthocyanidins isolated from the initial and deresinated (extracted with hexane) birch inner bark (Betula pendula Roth) with water, 15% water-ethanol solution and ethyl acetate in a Soxhlet apparatus was carried out. It was shown that preliminary extraction of birch inner bark with hexane has no significant effect on the yield of proanthocyanidins during its subsequent extraction with water, 15% water-alcohol solution and extraction with ethyl acetate in a Soxhlet apparatus. The average yield of proanthocyanidins from the initial and deresinified birch inner bark during extraction with water was 1.20 and 1.21%; with 15% water-alcohol solution – 1.44 and 1.46%; and with ethyl acetate in Soxhlet apparatus – 1.46 and 1.60%, respectively. The composition of proanthocyanidins isolated with 15% aqueous-alcoholic solution and ethyl acetate in a Soxhlet apparatus was studied by UV, FTIR and 13C NMR spectroscopy methods. It was shown that the composition of the obtained proanthocyanidins contains a galloyl group, which increases the antiradical activity of the obtained substances. After transformation of proanthocyanidins into colored anthocyanidins, the flavonoid composition of the obtained substances was studied. By converting proanthocyanidins into colored anthocyanidins the flavonoid composition of the obtained substances was studied. It was found, that proanthocyanidins in birch inner bark mainly consist of procyanidin and prodelphinidin.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Alexander Vladimirovich Levdansky , Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS"

candidate of chemical sciences, research fellow

Natalia Viktorovna Garyntseva , Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS"; Krasnoyarsk State Agrarian University

candidate of chemical sciences, research fellow, associate professor

Vladimir Alexandrovich Levdansky , Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS"

doctor of chemical sciences, leading research fellow

References

Kuz'micheva N.A., Buzuk G.N., Kurlyuk O.V. Vestnik farmatsii, 2016, vol. 71, no. 1, pp. 72–75. (in Russ.).

Osipov V.I., Polyakov N.A., Sidel'nikov A.N., Khaziyeva F.M. Rastitel'nyye resursy, 2017, vol. 53, no. 1, pp. 114–125. (in Russ.).

Haslam E. J. Nat. Prod., 1996, vol. 59, no. 2, pp. 205–215. https://doi.org/10.1021/np960040.

Santos-Buelga C., Scalbert A. ‎J. Sci. Food Agric., 2000, vol. 80, no. 7, pp. 1094–1117. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1094::AID-JSFA569>3.0.CO;2-1.

Ossipova S., Ossipov V., Haukioja E., Loponen J., Pihlaja K. Phytochem. Anal., 2001, vol. 12, no. 2, pp. 128–133. https://doi.org/10.1002/pca.568.

Karonen M., Leikas A., Loponen J., Sinkkonen J., Ossipov V., Pihlaja K. Phytochem. Anal., 2007, vol. 18, no. 5, pp. 378–386. https://doi.org/10.1002/pca.992.

Sprygin V.G., Kushnerova N.F. Pharm. Chem. J., 2002, vol. 36, no. 3, pp. 139–143. https://doi.org/10.1023/A:1019682311646.

Chang Q., Zhu M., Zuo Z., Chow M., Ho W.K.K. J. Chromatogr. B: Biomed. Sci. Appl., 2001, vol. 760, no. 2, pp. 227–235. https://doi.org/10.1016/S0378-4347(01)00273-0.

Kim S.H., Kang K.W., Kim K.W., Kim N.D. Life Sciences, 2000, vol. 67, no. 2, pp. 121–131. https://doi.org/10.1016/s0024-3205(00)00608-1.

Bors W., Michel C., Stettmaier K. Arch. Biochem. Biophys., 2000, vol. 374, no. 2, pp. 347–355. https://doi.org/10.1006/abbi.1999.1606.

Proanthocyanidins. URL: https://www.chemfaces.com/natural/Proanthocyanidins-CFN99556.html.

Proanthocyanidins. URL: https://www.sigmaaldrich.com/RU/en/search/proanthocyanidins?focus=products&page= 1&perpage=30&sort=relevance&term=proanthocyanidins&type=product.

Levdanskiy V.A., Levdanskiy A.V., Kuznetsov B.N. Khimiya rastitel'nogo syr'ya, 2022, no. 4, pp. 101–107. https://doi.org/10.14258/jcprm.20220411490. (in Russ.).

Levdanskiy V.A., Korol'kova I.V., Levdanskiy A.V., Kuznetsov B.N. Khimiya rastitel'nogo syr'ya, 2020, no. 4, pp. 227–233. https://doi.org/10.14258/jcprm.2020047749. (in Russ.).

Levdansky V.A., Kondrasenko A.A., Levdansky A.V., Lutoshkin M.A. J. Sib. Fed. Univ. Chem., 2019, vol. 12, no. 4, pp. 604–613. https://doi.org/10.17516/1998-2836-0155.

Neto R.T., Santos S.A.O., Oliveira J., Silvestre A.J.D. Ind. Crops Prod., 2020, vol. 151, 112450. https://doi.org/10.1016/j.indcrop.2020.112450.

Amiri S., Dastghaib S., Ahmadi M., Mehrbod P., Khadem F., Behrouj H., Aghanoori M.-R., Machaj F., Ghamsari M., Rosik J., Hudecki A., Afkhami A., Hashemi M., Los M.J., Mokarram P., Madrakian T., Ghavami S. Biotechnol. Adv., 2020, vol. 38, 107409. https://doi.org/10.1016/j.biotechadv.2019.06.008.

Patent 2363486 (RU). 2009. (in Russ.).

Patent 2367460 (RU). 2009. (in Russ.).

Patent 2381031 (RU). 2010. (in Russ.).

Deyneko I.P., Faustova N.M. Khimiya rastitel'nogo syr'ya, 2015, no. 1, pp. 51–62. https://doi.org/10.14258/jcprm.201501461. (in Russ.).

Diouf P.N., Tibirna C.M., García-Pérez M.-E., Royer M., Dubé P., Stevanovic T. Journal of Biomaterials and Nano-biotechnology, 2013, vol. 4, no. 3A, pp. 1–8. https://doi.org/10.4236/jbnb.2013.43A001.

Ku C.S., Mun S.P. Wood Sci. Technol., 2007, vol. 41, no. 3, pp. 235–247. https://doi.org/10.1007/s00226-006-0103-8.

Fu C., Yang D., Peh W.Y.E., Lai S., Feng X., Yang H. J. Food Sci., 2015, vol. 80, no. 10, pp. C2191–C2199. https://doi.org/10.1111/1750-3841.13005.

Takahashi T., Nagatoishi S., Kuroda D., Tsumoto K. PLoS One, 2018, vol. 13, no. 10, e0204856. https://doi.org/10.1371/journal.pone.0204856.

Plumb G.W., De Pascual-Teresa S., Santos-Buelga C., Cheynier V., Williamson G. Free Radic. Res., 1998, vol. 29, no. 4, pp. 351–358. https://doi.org/10.1080/10715769800300391.

Published
2024-11-18
How to Cite
1. Levdansky A. V., Garyntseva N. V., Levdansky V. A. ISOLATION AND STUDY OF THE COMPOSITION OF PROANTHOCYANIDINS FROM INNER BARK OF BIRCH BETULA PENDULA ROTH // chemistry of plant raw material, 2024. № 4. P. Online First. URL: http://journal.asu.ru/cw/article/view/15273.
Section
Low-molecular weight compounds