THE STUDY OF THERMAL IMPACT ON THE TRANSFORMATION OF ASPEN WOOD AND BARK

  • Надежда (Nadezhda) Михайловна (Mikhailovna)) Микова(Mikova) Institute of Chemistry and Chemical Technology of Federal Research Centre Siberian Branch of the Russian Academy of Sciences Email: nm@icct.ru
  • Ольга (Ol'ga) Юрьевна (Yur'evna) Фетисова (Fetisova) Institute of Chemistry and Chemical Technology of Federal Research Centre Siberian Branch of the Russian Academy of Sciences Email: fetisova@icct.ru
  • Иван (Ivan) Петрович (Petrovich) Иванов (Ivanov) Institute of Chemistry and Chemical Technology of Federal Research Centre Siberian Branch of the Russian Academy of Sciences Email: ivanov@icct.ru
  • Нина (Nina) Ивановна (Ivanovna) Павленко (Pavlenko) Institute of Chemistry and Chemical Technology of Federal Research Centre Siberian Branch of the Russian Academy of Sciences Email: pni@icct.ru
  • Николай (Nikolaj) Васильевич (Vasil'evich) Чесноков (Chesnokov) Institute of Chemistry and Chemical Technology of Federal Research Centre Siberian Branch of the Russian Academy of Sciences Email: cnv@icct.ru
Keywords: aspen wood and bark, differential-thermal analysis, decomposition range, pyrolysis, functional composition, surface morphology

Abstract

Thermal gravimetry analysis (TGA) and differential scanning calorimetry (DSC), scanning electron microscopy (SEM), FT-IR spectroscopy, and thermal adsorption of nitrogen (BET) methods were used to study the thermal destruction of woody biomass of aspen (bark and wood) in argon and air in the temperature range from 25 to 800 °C. The composition and properties of the products obtained as a result of thermal decomposition of the initial wood biopolymers are characterized.

It is established that the main range of thermal decomposition of wood in an inert medium included an interval from 227 to 500 °C, and aspen bark covered a temperature range from 180 to 600 °C. In the air atmosphere, the temperature zone of thermal decomposition narrows, the loss of mass of matter is observed in two temperature intervals of preferential decomposition of the substance with a shift toward a decrease in the maximum rate of decomposition for the bark (~40 °C), and for wood – 34,6 °C.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Надежда (Nadezhda) Михайловна (Mikhailovna)) Микова(Mikova), Institute of Chemistry and Chemical Technology of Federal Research Centre Siberian Branch of the Russian Academy of Sciences
старший научный сотрудник,  кандидат химических наук
Ольга (Ol'ga) Юрьевна (Yur'evna) Фетисова (Fetisova), Institute of Chemistry and Chemical Technology of Federal Research Centre Siberian Branch of the Russian Academy of Sciences
научныйсотрудник, кандидат химических наук
Иван (Ivan) Петрович (Petrovich) Иванов (Ivanov), Institute of Chemistry and Chemical Technology of Federal Research Centre Siberian Branch of the Russian Academy of Sciences
старший научный сотрудник,  кандидат технических наук
Нина (Nina) Ивановна (Ivanovna) Павленко (Pavlenko), Institute of Chemistry and Chemical Technology of Federal Research Centre Siberian Branch of the Russian Academy of Sciences
ведущий научныйсотрудник,  кандидат химических наук
Николай (Nikolaj) Васильевич (Vasil'evich) Чесноков (Chesnokov), Institute of Chemistry and Chemical Technology of Federal Research Centre Siberian Branch of the Russian Academy of Sciences
директор,  доктор химических наук

References

Poletto M., Zattera A.J., Forte M.M.C., Santana R.M.C. Bioresource Technology, 2012, vol. 109, pp. 148–153.

Sebio-Punal T., Naya S., Lopez-Beceiro J., Tarrio-Saaverda J., Artiaga R. J. Therm. Anal. Calorim., 2012, vol. 109(3), pp. 1163–1167.

Nakanishi M., Ogi N., Fukuda Y. J. Therm. Anal. Calorim., 2010, vol. 101(1), pp. 391–396.

Fengel D., Vegener G. Drevesina (Khimiia, ul'trastruktura, reaktsii). [Wood (Chemistry, ultrastructure, reactions)]. Moscow, 1988, 512 p. (in Russ.).

Byrne C.E., Nagle D.C. Carbon., 1997, vol. 35, pp. 267–273.

Mikova N.M., Ivanov I.P., Chesnokov N.V., Kuznetsov B.N. Zhurnal SFU, 2015, vol. 8, no. 1, pp. 78–85. (in Russ.).

Krol M., Gryglewicz G., Machnikowski J. Fuel Processing Technology, 2011, vol. 92, pp. 158–165.

Salas-Enriguez B.G., Torres-Huerta A.M., Conde-Barajas E., Dominiguez-Crespo M.A., Diaz-Garcia L., Ma. de la Luz, Negrete-Rodriguez X. J. Therm. Anal. Calorim., 2016, vol. 124, pp. 1383–1398.

Daineko I.P., Faustova N.M. Khimiia rastitel'nogo syr'ia, 2015, no. 1, pp. 51–62. (in Russ.).

Dolgodvorova S.Ia., Burlakova R.F., Cherniaeva G.N. Khimiia drevesiny, 1990, no. 5, pp. 79–82. (in Russ.).

Maryandyshev P., Chernov A., Lyubov V., Trouve G., Brillard A., Brilhac J-F. J. Therm. Anal. Calorim., 2015, vol. 122, pp. 963–973.

Loskutov S.R., Shapchenkova O.A., Aniskina A.A. Sibirskii Lesnoi zhurnal, 2015, no. 6, pp. 17–30. (in Russ.).

Sebestyen Z., Lezsovits F., Jakab E., Varhegyi. G. J. Therm. Anal. Calorim., 2012, vol. 110(3), pp. 1501–1509.

Vichnevsky S., Fuhr B., Melnichuk J. J. Pulp & Paper Sci., 2003, vol. 29(1), pp. 17–20.

Muller-Hagedorn M., Bockhorn H. J. Anal. Appl. Pyrolysis., 2007, vol. 79, pp. 136–146.

Obolenskaia A.V., El'nitskaia Z.P., Leonovich A.A. Laboratornye raboty po khimii drevesiny i tselliulozy. [Laboratory work on the chemistry of wood and cellulose]. Moscow, 1991, 320 p. (in Russ.).

Korosec R.C., Lavric B., Rep G., Pohleven F., Bukovec P. J. Therm. Anal. Calorim., 2009, vol. 98(1), pp. 189–195.

Wang S., Guo X., Wang K., Luo Z. J. Anal. Appl. Pyrolysis., 2011, vol. 91, pp. 183–189.

Shen D.K., Gu S., Luo K.H., Bridgwater A.V., Fang M.X. Fuel, 2009, vol. 88, pp. 1024–1030.

Caprariis B., Santarelli M.L., Scarsella M., Herce C., Verdone N., Filippis P. J. Therm. Anal. Calorim., 2015, vol. 121, pp. 1403–1410.

Mamleev V., Bourbigot S., Yvon J. J. Anal. Appl. Pyrolysis., 2007, vol. 80, pp. 151–165.

Stefanidis S.D., Kalogiannis K.G., Iliopoulou E.F., Michailof C.M., Pilavachi P.A., Lappas A.A. J. Anal. Appl. Pyroly-sis, 2014, vol. 105, pp. 143–150.

Raemy A., Schweizer T.F. J. Thermal Anal., 1983, vol. 28, pp. 95–107.

Bazarnova N.G., Karpova E.V., Katrakov I.B., Markin V.I., Mikushina I.V., Ol'khov Iu.A., Khudenko S.V. Metody is-sledovaniia drevesiny i ee proizvodnykh. Uchebnoe posobie. [Methods of studying wood and its derivatives. Tutorial]. Barnaul, 2002, 160 p. (in Russ.).

Diaz-Teran J., Nevskaia D.M., Fierro J.L.G., Lopez-Peinado A.J., Jerez A. Micropor. Mesopor. Mater., 2003, vol. 60, pp. 173–181.

Shebani A.N., Van Reenen A.J., Meincken M. Thermochim. Acta., 2008, vol. 471(1-2), pp. 43–50.

Nada A.M.A., Abou Yousef H., El-Gohary S. J. Therm. Anal. Calorim., 2002, vol. 68, pp. 265–273.

Nassar M.M., MacKay G.D.M. Wood and Fiber Science, 1984, vol. 16(3), pp. 441–453.

Alabadi A., Razzaque S., Yang Y., Chen S., Tan B. J. Chem. Engineering, 2015, vol. 281, pp. 606–612.

Eiubova N.A., Aliev S.M., Sultanova K.D. Khimiia rastitel'nogo syr'ia, 2015, no. 1, pp. 197–203. (in Russ.).

Cagnon B., Py X., Guillot A., Stoeckli F., Chambat G. Bioresource Technology, 2009, vol. 100, pp. 292–298.

Faix O. Methods in Lignin Chemistry, ed. S.Y. Lin, C.W. Dence. Springer-Verlag Berlin-Heidelberg, 1992, pp. 233–241.

Diez M.A., Alvarez R., Fernandez M. Fuel, 2012, vol. 96, pp. 306–313.

Gao N., Li A., Quan C, Du L., Duan Y. J. Anal. Appl. Pyrolysis, 2013, vol. 100, pp. 26–32.

Strezov V., Patterson M., Zymla V., Fisher K., Evans T.J., Nelson P.F. J. Appl. Pyrolysis, 2007, vol. 79, pp. 91–100.

Published
2017-05-31
How to Cite
1. Микова(Mikova)Н. (Nadezhda) М. (Mikhailovna)), Фетисова (Fetisova)О. (Ol’ga) Ю. (Yur’evna), Иванов (Ivanov)И. (Ivan) П. (Petrovich), Павленко (Pavlenko)Н. (Nina) И. (Ivanovna), Чесноков (Chesnokov)Н. (Nikolaj) В. (Vasil’evich) THE STUDY OF THERMAL IMPACT ON THE TRANSFORMATION OF ASPEN WOOD AND BARK // chemistry of plant raw material, 2017. № 4. P. 53-64. URL: http://journal.asu.ru/cw/article/view/2018.
Section
Biopolymers of plants