POLYPHENOLS OF ARCTIC BROWN ALGAE: EXTRACTION, POLYMOLECULAR COMPOSITION
UDC 661.12
Abstract
Arctic brown algae of the species Fucus vesiculosus are characterized by a high content of polyphenolic compounds - phlorotannins, exhibiting high biological activity. The aim of this study is to develop a methodology for the isolation and analysis of biologically active polyphenolic compounds from arctic brown algae. The proposed scheme for the isolation of polyphenols from Fucus vesiculosus brown algae is based on the principles of "green chemistry" and is carried out by sequential disassembly of the biomass of the plant object with the release of associated components (lipid-pigment complex, polysaccharides, mannitol) and maximum yield of polyphenol fraction. As a result of the experimental work, the optimal parameters for carrying out each stage of the proposed scheme were determined and a stepwise assessment of its effectiveness was carried out. The extractable fraction of polyphenols contains up to 67% of polyphenols relative to their content in the initial biomass, and the proportion of polyphenols in the fraction is up to 83%. A study of the phlorotannins fraction showed that its antioxidant activity is meaningful and it was 553±24 (mg of ascorbic acid/g extract). The polymolecular composition of the target fraction was investigated by the method of exclusion gel filtration chromatography, which showed the polymodal distribution, indicating the presence of several groups of components - low molecular weight and high molecular weight phlorotannins with masses ranging from thousands to hundreds of thousands of Daltons. The data obtained using chromatography-mass spectrometry and MALDI mass spectrometry make it possible to identify the presence of low molecular weight phlorotannins in the polyphenol fraction with masses from 250 to 1638 Da, which are close analogues in structure.
Downloads
Metrics
References
Bogolitsyn K.G., Kaplitsin P.A., Dobrodeyeva L.K., Druzhinina A.S., Ovchinnikov D.V., Parshina A.E., Shul'gi-na Ye.V. Zhurnal prikladnoy khimii, 2017, vol. 90, no. 11, pp. 1513–1519. (in Russ.).
Klindukh M.P., Obluchinskaya E.D. Vestnik MGTU, 2013, vol. 16, no. 3, pp. 466–471. (in Russ.).
Dobrodeyeva L.K., Dobrodeyev K.G. Immunomodulyatory rastitel'nogo i vodoroslevogo proiskhozhdeniya. [Immu-nomodulators of plant and algal origin]. Arkhangelsk, 2008, 294 p. (in Russ.).
Obluchinskaya Ye.D. Vestnik Kol'skogo nauchnogo tsentra RAN, 2015, no. 2, pp. 78–81. (in Russ.).
Ragan M.A., Glombitza K.W. In Progress in Phycological Research, 1986, vol. 4, pp. 129−241.
Van Alstyne K.L. Journal of Chemical Ecology, 1995, vol. 21, pp. 45–58, DOI: 10.1007/BF02033661.
Ragan M.A., Jensen A. Journal of Experimental Marine Biology and Ecology, 1978, vol. 34, no. 3, pp. 245–258, DOI: 10.1016/S0022-0981(78)80006-9.
Heffernan N., Brunton P., Fitz Gerald R.J., Smyth T.J. Marine Drugs, 2015, vol. 13, pp. 509–528, DOI: 10.3390/md13010509.
Vo T.S., Ngo D.H., Kim S.K. Process Biochemistry, 2012, vol. 47, no. 3, pp. 386–394, DOI: 10.1016/j.procbio.2011.12.014.
Ryu Y.B., Jeong H.J., Yoon S.Y., Park J.Y., Kim Y.M., Park S.J., Rho M.C., Kim S.J., Lee W.S. Journal of Agricul-tural and Food Chemistry, 2011, vol. 59, no. 12, pp. 6467–6473, DOI: 10.1021/jf2007248.
Zenthoefer M., Geisen U., Hofmann-Peiker K., Fuhrmann M., Kerber J., Kirchhofer R., Hennig S., Peipp M., Gey-er R., Piker L., Kalthoff H. Journal of Applied Phycology, 2017, vol. 29, no. 4, pp. 2021–2037, DOI: 10.1007/s10811-017-1080-z.
Artan M., Li Y., Karadeniz F., Lee S.H., Kim M.M., Kim S.K. Bioorganic and Medicinal Chemistry, 2008, vol. 16, no. 17, pp. 7921–7926, DOI: 10.1016/j.bmc.2008.07.078.
Sugiura Y., Matsuda K., Yamada Y., Nishikawa M., Shioya K., Katsuzaki H., Imai K., Amano H. Bioscience, Bio-technology, and Biochemistry, 2006, vol. 70, no. 11, pp. 2807–2811, DOI: 10.1271/bbb.60417.
Hermund D.B., Yesiltas B., Honold P., Jónsdóttir R., Kristinsson H.G., Jacobsen C. Journal of Functional Foods, 2015, vol. 19, pp. 828–841, DOI: 10.1016/j.jff.2015.02.020.
Fairhead V.A., Amsler C.D., McClintock J.B., Baker B.J. Polar Biology, 2005, vol. 28, no. 9, pp. 680–686, DOI: 10.1007/s00300-005-0735-4.
Shibata T., Ishimaru K., Kawaguchi S., Yoshikawa H., Hama Y. Journal of Applied Phycology, 2008, vol. 20, no. 5, pp. 705−711, DOI: 10.1007/s10811-007-9254-8.
Nakamura T., Nagayama K., Uchida K., Tanaka R. Fisheries Science, 1996, vol. 62, no. 5, pp. 923–926, DOI: 10.2331/fishsci.62.923.
Podkorytova A.V., Kadnikova I.A. Kachestvo, bezopasnost' i metody analiza produktov iz gidrobiontov. Rukovodstvo po sovremennym metodam issledovaniy morskikh vodorosley, trav i produktov ikh pererabotki. [Quality, safety and analysis methods of products from aquatic organisms. Guide to modern research methods for algae, herbs and their processed products]. Moscow, 2009, vol. 3, 108 p. (in Russ.).
Lourenco S.O., Barbarino E., De-Paula J.C., Da S.P., Lanfer Marquez L.O. Phycological Research, 2002, vol. 50, no. 3, pp. 233–241, DOI: 10.1046/j.1440-1835.2002.00278.x.
Obolenskaya A.V., Yel'nitskaya Z.P., Leonovich A.A. Laboratornyye raboty po khimii drevesiny i tsellyulozy: uchebnoye posobiye dlya vuzov. [Laboratory work on the chemistry of wood and cellulose: a textbook for universities]. Moscow, 1991, 320 p. (in Russ.).
GOST 26185-84. Vodorosli morskiye, travy morskiye i produkty ikh pererabotki. Metody analiza. [GOST 26185-84. Seaweeds, marine herbs and their processed products. Methods of analysis]. Moscow, 2010. 34 p. (in Russ.).
Wang T., Jonsdottir R., Liu H., Gu L., Kristinsson H.G., Raghavan S., Olafsdottir G. Journal of Agricultural and Food Chemistry, 2012, vol. 60, no. 23, pp. 5874−5883, DOI: 10.1021/jf3003653.
Hagerman A.E. Journal of Chemical Ecology, 1988, vol. 14, pp. 453–461, DOI: 10.1007/BF01013897.
Wissam Z., Bashour Ghada B., Wassim A., Warid K. International Journal of Pharmacy and Pharmaceutical Sciences, 2012, vol. 4, no. 3, pp. 675–682.
Bligh E.G., Dyer W.J. Canadian Journal of Biochemistry and Physiology, 1959, vol. 37, pp. 911–917, DOI: 10.1139/o59-099.
Copyright (c) 2019 Khimiya Rastitel'nogo Syr'ya (Chemistry of plant raw material)
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.