SULFATION OF ABIES ETHANOL LIGNIN WITH COMPLEXES OF SULFUR TRIOXIDE WITH 1,4-DIOXANE AND PYRIDINE

UDC 547.993:543.421/424:543.429

  • Yuriy Nikolayevich Malyar Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”; Siberian Federal University Email: leo_lion_leo@mail.ru
  • Natal'ya Yur'yevna Vasil'yeva Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”; Siberian Federal University Email: leo_lion_leo@mail.ru
  • Aleksandr Sergeyevich Kazachenko Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”; Siberian Federal University Email: leo_lion_leo@mail.ru
  • Galina Pavlovna Skvortsova Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS” Email: leo_lion_leo@mail.ru
  • Irina Vladimirovna Korol'kova Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS” Email: leo_lion_leo@mail.ru
  • Svetlana Alekseyevna Kuznetsova Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS” Email: leo_lion_leo@mail.ru
Keywords: ethanol lignin, abies wood, sulfation, chlorosulfonic acid, dioxane, pyridine, sulfated ethanol lignin, FTIR spectroscopy, gel permeation chromatography, optimization

Abstract

In this work, we optimized the process of sulfating abies ethanol lignin with complexes of sulfuric anhydride with pyridine and 1,4-dioxane. Experimentally found are the conditions for the implementation of the process of sulfation of abies ethanol lignin by complexes of sulfur trioxide with 1,4-dioxane and pyridine, providing a high sulfur content (12.0–12.6%). It was shown that a high sulfur content of 12.0–13.5% (mass.) in the obtained ethanol lignin sulfate is achieved when the ratio of the amount of chlorosulfonic acid to the amount of abies ethanol lignin is 20.22 : 1 mmol : g and the duration of the sulfation process is 60–120 min and independent of the nature of the sulfating complex. The structure and composition of water-soluble sulfated abies ethanol lignin are confirmed by FTIR spectroscopy, gel permeation chromatography and elemental analysis. In the FTIR spectra of sulfated abies ethanol lignin, in comparison with the FTIR spectra of the initial abies ethanol lignin, there are absorption bands in the region of 1270–1260, 1220–1212, 861–803 cm-1, corresponding to vibrations of sulfate groups. Compared to the initial lignin, sulfated abies ethanol lignin has a low degree of polydispersity. In particular, there was an increase in Mw c ~1.5 kDa to ~3.4 kDa in lignin sulfated for 30 min and a decrease in polydispersity from 2.59 to 1.22 compared to the initial abies ethanol lignin. With an increase in the sulfation time, the profile of the molecular mass distribution curve shifts to a high molecular weight region, with a simultaneous increase in polydispersity to 1.5 and Mw increases to ~4.3 kDa.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Yuriy Nikolayevich Malyar, Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”; Siberian Federal University

кандидат химических наук, старший научный сотрудник лаборатории каталитических превращений возобновляемых ресурсов, доцент кафедры органической и аналитической химии

Natal'ya Yur'yevna Vasil'yeva, Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”; Siberian Federal University

кандидат химических наук, старший научный сотрудник лаборатории химии природного органического сырья, доцент кафедры органической и аналитической химии

Aleksandr Sergeyevich Kazachenko, Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”; Siberian Federal University

кандидат химических наук, научный сотрудник лаборатории химии природного органического сырья

Galina Pavlovna Skvortsova, Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”

научный сотрудник лаборатории химии природного органического сырья

Irina Vladimirovna Korol'kova, Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”

младший научный сотрудник лаборатории молекулярной спектроскопии и анализа

Svetlana Alekseyevna Kuznetsova, Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”

доктор химических наук, главный научный сотрудник лаборатории химии природного органического сырья

References

Liu Q., Luo L., Zheng L. International Journal of Molecular Sciences, 2018, vol. 19, no. 2, pp. 335–341. DOI: 10.3390/ijms19020335.

Lourenço A., Pereira H. Lignin – trends and applications, IntechOpen, 2018, pp. 65–98. DOI: 10.5772/intechopen.71208.

Brauns F., Hibbert H. Canadian Journal of Research, 1935, vol. 13b(1), pp. 28–34. DOI: 10.1139/cjr35b-003.

Tribot A., Amer G., Alio M.A., Baynast H., Delattre C., Pons A., Mathias J.-D., Callois J.-M., Vial C., Michaud P., Dussap C.-G. European Polymer Journal, 2019, vol. 112, pp. 228–240. DOI: 10.1016/j.eurpolymj.2019.01.007.

Danish M., Ahmad T. Renewable and Sustainable Energy Reviews, 2018, vol. 87, pp. 1–21. DOI: 10.1016/j.rser.2018.02.003.

Spiridon I. Cellulose Chemistry and Technology, 2018, vol. 52, no. 7–8, pp.543–550.

Witzler M., Alzagameem A., Bergs M., Khaldi-Hansen B.E., Klein S.E., Hielscher D., Schulze M. Molecules, 2018, vol. 23, no. 8, p. 1885. DOI: 10.3390/molecules23081885.

Vinardell M.P., Mitjans M. International Journal of Molecular Sciences, 2017, vol. 18, no. 6, p. 1219. DOI: 10.3390/ijms18061219.

Andrei G., Lisco A., Vanpouille C., Introini A., Balestra E., van den Oord J., Cihlar T., Perno C.F., Snoeck R., Margo-lis L., Balzarini J. Cell Host Microbe, 2011, vol. 10, pp. 379–389. DOI: 10.1016/j.chom.2011.08.015.

Raghuraman A., Tiwari V., Zhao Q., Shukla D., Debnath A.K., Desai U.R. Biomacromolecules. 2007, vol. 8, pp. 1759–1763. DOI: 10.1021/bm0701651.

Saluja B., Thakkar J.N., Li H., Desai U.R., Sakagami M. Pulmonary Pharmacology and Therapeutics, 2013, vol. 26, pp. 296–304. DOI: 10.1016/j.pupt.2012.12.009.

Barapatre A., Aadil K.R., Tiwary B.N., Jha H. International Journal of Biological Macromolecules, 2015, vol. 75, pp. 81–89. DOI: 10.1016/j.ijbiomac.2015.01.012.

Hasegawa Y., Kadota Y., Hasegawa C., Kawiminami S. Journal of Nutritional Science and Vitaminology. 2015, vol. 61, pp. 449–454. DOI: 10.3177/jnsv.61.449.

Pan X., Kadla J.F., Ehara K., Gilkes N., Saddler J.N. Journal of Agricultural and Food Chemistry, 2006, vol. 54, pp. 5806–5813. DOI: 10.1021/jf0605392.

Qazi S.S., Li D., Briens C., Berruti F., Abou-Zaid M.M. Molecules, 2017, vol. 22, E372. DOI: 10.3390/molecules22030372.

Sun S.N., Cao X.F., Xu F., Sun R.C., Jones G.L. Journal of Agricultural and Food Chemistry. 2014, vol. 62, pp. 5939–5947. DOI: 10.1021/ jf5023093.

Barapatre A., Meena A.S., Mekala S., Das A., Jha H. International Journal of Biological Macromolecules, 2016, vol. 86, pp. 443–453. DOI: 10.1016/j. ijbiomac.2016.01.109.

Wang Q., Mu H., Zhang L., Dong D., Zhang W., Duan J. International Journal of Biological Macromolecules, 2015, vol. 74, pp. 507–514. DOI: 10.1016/j. ijbiomac.2014.12.044.

Frangville C., Rutkevicius M., Richter A.P., Velev O.D., Stoyanov S.D., Paunov V.N. Chemphyschem, 2012, vol. 13, pp. 4235–4243. DOI: 10.1002/cphc.201200537.

Richter A., Brown J.S., Bharti B., Wang A., Gangwal S., Houck K., Cohen Hubal E.A., Paunov V.N., Stoyanov S.D., Velev O.D. Nature Nanotechnology, 2015, vol. 10, pp. 817–823. DOI: 10.1038/nnano.2015.141.

Prinsen P., Narani A., Hartog A.F., Wever R., Rothenberg G. ChemSusChem. 2017, vol. 10, no. 10, pр. 2267–2273. DOI: 10.1002/cssc.201700376.

Liang A., Thakkar J.N., Hindle M., Desai U.R. Journal of Chromatography B, 2012, vol. 908, pp. 45–51. DOI: 10.1016/j.jchromb.2012.09.036.

Henry B.L., Thakkar J.N., Liang A., Desai U.R. Biochemical and Biophysical Research Communications, 2012, vol. 417, no. 1, pp. 382–386. DOI: 10.1016/j.bbrc.2011.11.122.

Henry B.L., Desai U.R. Thrombosis Research, 2014, vol. 134, no. 5, pр. 1123–1129. DOI: 10.1016/j.thromres.2014.08.024.

Abdel-Aziz M.H., Mosier P.D., Desai U.R. Biochemical and Biophysical Research Communications, 2011, vol. 413, no. 2, pp. 348–352. DOI: 10.1016/j.bbrc.2011.08.102.

Raghuraman A., Tiwari V., Zhao Q., Shukla D., Debnath A.K., Desai U.R.. Biomacromolecules, 2007, vol. 8, pp. 1759–1763. DOI: 10.1021/bm0701651.

Thakkar J.N. Discovery of lignin sulfate as a potent ingibitor of HSV entry cells. Theses and Dissertations Graduate School, Virginia Commonwealth University, 2006, 132 p.

Raghuraman A., Tiwari V., Thakkar J.N., Gunnarsson G.T., Shukla D., Hindle M., Desai U.R. Biomacromolecules, 2005, vol. 6, pp. 2822–2832. DOI: 10.1021/bm0503064.

Dzhil'bert E.Ye. Sul'firovaniye organicheskikh soyedineniy. [Dzhil'bert E.E. Sulfonation of organic compounds]. Mos-cow, 1969, 416 p. (in Russ.).

Patent 2641758 (RU). 2018. (in Russ.).

Kuznetsov B.N., Vasilyeva N.Yu., Kazachenko A.S., Skvortsova G.P., Levdansky V.A., Lutoshkin M.A. Journal of Siberian Federal University. Chemistry, 2018, vol. 1, no. 11, pр. 22–130. DOI: 10.17516/1998-2836-0063.

Quesada-Medina J., López-Cremades F.J., Olivares-Carrillo P. Bioresource Technology, 2010, vol. 101, pр. 8252–8260. DOI: 10.1016/j.biortech.2010.06.011.

Cheronis N.D., Ma T.S. Mikro- i polumikrometody organicheskogo funktsional'nogo analiza. [Micro- and semi-micromethods of organic functional analysis]. Moscow, 1973, 576 p. (in Russ.).

Sudakova I.G., Garyntseva N.V., Yatsenkova O.V., Kuznetsov B.N. Journal of Siberian Federal University. Chemis-try, 2013, vol. 6, pp. 76–84.

Calvo-Flores F.G., Dobado J.A., Isac-García J., Martín-Martínez F.J. Lignin and Lignans as Renewable Raw Materi-als: Chemistry, Technology and Applications, John Wiley & Sons. Chichestes, 2015, 506 p.

Gosudarstvennaya farmakopeya Rossiyskoy Federatsii. 14 izd. [State Pharmacopoeia of the Russian Federation. 14th ed.]. Moscow, 2008, vol. 1, 704 p. (in Russ.).

Zakis G.F. Funktsional'nyy analiz ligninov i ikh proizvodnykh. [Functional analysis of lignins and their derivatives]. Ri-ga, 1987, 230 p. (in Russ.).

Khergert G.L. IK-spektry lignina. [IR spectra of lignin]. Moscow, 1975, 632 p. (in Russ.).

Bellamy L.J. Advances in Infrared Group Frequencies, London, 1968, 328 p.

Roeges N.P.G. A guide to the complete interpretation of infrared spectra of organic structures, John Wiley & Sons, 1995, 340 p.

Published
2020-10-22
How to Cite
1. Malyar Y. N., Vasil’yeva N. Y., Kazachenko A. S., Skvortsova G. P., Korol’kova I. V., Kuznetsova S. A. SULFATION OF ABIES ETHANOL LIGNIN WITH COMPLEXES OF SULFUR TRIOXIDE WITH 1,4-DIOXANE AND PYRIDINE // chemistry of plant raw material, 2020. № 3. P. 5-15. URL: http://journal.asu.ru/cw/article/view/6931.
Section
Biopolymers of plants