ECDYSTEROIDS AND GLYCOSYLFLAVONES OF SILENE SIBIRICA (CARYOPHYLLACEAE)

UDC 582.669.26 : 547.92 : 547.972

  • Daniil Nikolayevich Olennikov Institute of General and Experimental Biology SB RAS http://orcid.org/0000-0001-8194-1061 Email: olennikovdn@mail.ru
  • Nina Igorevna Kashchenko Institute of General and Experimental Biology SB RAS Email: ninkk@mail.ru
Keywords: Silene sibirica, Caryophyllaceae, ecdysteroids, 20-hydroxyecdysone, glycosylflavones, HPLC, mass-spectrometry

Abstract

The present work realized the chemical study of Silene sibirica (L.) Pers. (Caryophyllaceae) high-performance liquid chromatography with diode array and mass spectrometric detection (electrospray ionization) (HPLC-DAD-ESI-MS). As a result, 25 compounds were found, including nine ecdysteroids and sixteen flavonoids. Ecdysteroids components were podecdysone C, integristerone A, turkesterone, polypodine B, 20-hydroxyecdysone and its 2-O-cinnamate, ecdysone, 2-deoxy-20-hydroxyecdysone, and 2-deoxyecdysone. Flavonoids were the glycosylflavones and derivatives of luteolin and apigenin. Luteolin glycosides included luteolin-7-O-rutinoside, lucenin-2, carlinoside, isoorientin and its 2″-O-arabinoside, as well as isoscoparin. The largest group of apigenin glycosides included O-glycosides as 7-O-glucoside and 7-O-rutinoside, C-glycosides as isovitexin, schaftoside, vicenin-2, and mixed C,O-glycosides as isovitexin-2′′-O-arabinoside and 2′′-O-rhamnoside. Three unidentified derivatives of apigenin were pre studied and their structural features discussed. Quantitative data about the content of selected compounds indicated that ecdysteroids accumulated in S. sibirica flowers (7.14–14.92 mg/g) and glycosylflavones were found predominantly in leaves (7.88–18.55 mg/g). The major ecdysteroid compound was 20-hydroxyecdysone, while flavonoids predominants were shaftoside and isovitexin-2″-O-ramnoside. A comparative analysis of the chemical composition of wild-growing and cultivated S. sibirica samples showed the stability of the metabolic profile of the plants during the introduction. The biological studies revealed the antiradical and antiglucosidase activity of the extracts. Thus, it was shown that the studied plant species (S. sibirica) is a source of ecdysteroids and glycosylflavones, and S. sibirica extracts have biological potency.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Daniil Nikolayevich Olennikov, Institute of General and Experimental Biology SB RAS

доктор фармацевтических наук, ведущий научный сотрудник лаборатории медико-биологических исследований

Nina Igorevna Kashchenko, Institute of General and Experimental Biology SB RAS

кандидат фармацевтических наук, научный сотрудник лаборатории медико-биологических исследований

References

Flora SSSR [Flora of the USSR], ed. V.L. Komarov. Moscow, Leningrad, 1936, vol. VI, pp. 577–691. (in Russ.).

Oxelman B., Rautenberg A., Thollesson M., Larsson A., Frajman B., Eggens F., Petri A., Aydin Z., Töpel M., Brandtberg-Falkman A. Sileneae taxonomy and systematics, 2013, URL: http://www.sileneae.info.

Flora Sibiri [Flora of Siberia], ed. L.I. Malysheva, G.A. Peshkova. Novosibirsk, 1993, vol. 6, pp. 62–71. (in Russ.).

Olennikov D.N., Kashchenko N.I., Chirikova N.K. Khimiya Rastitel'nogo Syr'ya, 2019, no. 3, pp. 119–127. DOI: 10.14258/jcprm.2019035110. (in Russ.).

Olennikov D.N., Kashchenko N.I. Khimiya Rastitel'nogo Syr'ya, 2019, no. 4, pp. 135–147. DOI: 10.14258/jcprm.2019045109. (in Russ.).

Louden D., Handley A., Lafont R., Taylor S., Sinclair I., Lenz E., Orton T., Wilson I.D. Analyt. Chem., 2002, vol. 74, pp. 288–294. DOI: 10.1021/ac0107397.

Seliverstova A.A., Zibareva L.N., Yeremina V.I. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya, 2014, no. 3(27), pp. 101–114. (in Russ.).

Zibareva L.N., Yeremina V.I., Ivanova N.A., Laz'kov G.A. Rastitel'nyye resursy, 2003, vol. 39, no. 3, pp. 45–53. (in Russ.).

Osobo okhranyayemyye prirodnyye territorii Rossii (OOPT Rossii) [Specially protected natural territories of Russia (PAs of Russia)]. URL: http://oopt.aari.ru/bio/44537. (in Russ.).

Olennikov D.N., Kashchenko N.I. Chem. Nat. Comp., 2017, vol. 53, pp. 1199–1201. DOI: 10.1007/s10600-017-2239-1.

Olennikov D.N. Chem. Nat. Comp., 2018, vol. 54, pp. 798–800. DOI: 10.1007/s10600-018-2480-2.

Olennikov D.N., Chirikova N.K. Chem. Nat. Comp., 2019, vol. 55, pp. 1032–1038. DOI: 10.1007/s10600-019-02887-1.

Olennikov D.N., Kashchenko N.I., Chirikova N.K., Vasil’eva A.G., Gadimli A.I., Isaev J.I., Vennos C. Antioxidants, 2019, vol. 8, article 307. DOI: 10.3390/antiox8080307.

Olennikov D.N., Gadimli A.I., Isaev J.I., Kashchenko N.I., Prokopyev A.S., Katayeva T.N., Chirikova N.K., Ven-nos C. Metabolites, 2019, vol. 9, article 271. DOI: 10.3390/metabo9110271.

Olennikov D.N., Kashchenko N.I., Chirikova N.K., Gornostai T.G., Selyutina I.Yu., Zilfikarov I.N. Int. J. Molec. Sci., 2017, vol. 18, article 2579. DOI: 10.3390/ijms18122579.

Sarikurkcu C., Arisoy K., Tepe B., Cakir A., Abali G., Mete E. Food Chem. Toxicol., 2009, vol. 47, pp. 2479–2483. DOI: 10.1016/j.fct.2009.07.005.

Zengin G., Uysal S., Ceylan R., Aktumsek A. Ind. Crops Prod., 2015, vol. 70, pp. 1–6. DOI: 10.1016/j.indcrop.2015.03.012.

Zengin G., Menghini L., Malatesta L., De Luca E., Bellagamba G., Uysal S., Locatelli M. J. Enzyme Inhibit. Med. Chem., 2016, vol. 31, pp. 203–208. DOI: 10.1080/14756366.2016.1178247.

Mamadalieva N.Z., Lafont R., Wink M. Diversity, 2014, vol. 6, pp. 415–499. DOI: 10.3390/d6030415.

Girault J.-P., Bathori M., Varga E., Szendrei K., Lafont R. J. Nat. Prod., 1990, vol. 53, pp. 279–293. DOI: 10.1021/np50068a002.

Mamadalieva N., Zibareva L., Saatov Z. Chem. Nat. Comp., 2002, vol. 38, pp. 268–271. DOI: 10.1023/A:1020436128797.

Russell G.B., Fenemore P.G., Horn D.H.S., Middleton E.J. Aust. J. Chem., 1972, vol. 25, pp. 1935–1941. DOI: 10.1071/CH9721935.

Thompson M.J., Kaplanis J.N., Robbins W.E., Yamamoto R.T. Chem. Commun., 1967, pp. 650–653. DOI: 10.1039/C19670000650.

Bakhtiar A., Gleye J., Moulis C., Fouraste I., Stanislas E. Phytochemistry. 1990, vol. 29, pp. 1339–1340. DOI: 10.1016/0031-9422(90)85461-N.

Lin X., Wei J., Chen Y., Lu Z., Huang Q. J. Ethnopharmacol., 2016, vol. 187, pp. 187–194. DOI: 10.1016/j.jep.2016.04.050.

Zengin G., Mahomoodally M.F., Aktumsek A., Ceylan R., Uysal S., Mocan A., Yilmaz M.A., Picot-Allain C.M.N., Ciric A., Glamoclija J., Sokovic M. Food Biosci., 2018, vol. 23, pp. 75–82. DOI: 10.1016/j.fbio.2018.03.010.

Morales P., Carvalho A.M., Sánchez-Mata M.C., Cámara M., Molina M., Ferreira I.C. Genet. Res. Crop Evol., 2012, vol. 59, pp. 851–863. DOI: 10.1007/s10722-011-9726-1.

Taskin T., Bitis L. Spatula DD, 2013, vol. 3, pp. 1–5. DOI: 10.5455/spatula.20130218124721.

Yao Y., Cheng X., Wang L., Wang S., Ren G. Int. J. Mol. Sci., 2011, vol. 12, pp. 6445–6451. DOI: 10.3390/ijms12106445.

Li H., Song F., Xing J., Tsao R., Liu Z., Liu S. J. Am. Soc. Mass Spectrom., 2009, vol. 20, pp. 1496–1503. DOI: 10.1016/j.jasms.2009.04.003.

Published
2020-12-21
How to Cite
1. Olennikov D. N., Kashchenko N. I. ECDYSTEROIDS AND GLYCOSYLFLAVONES OF SILENE SIBIRICA (CARYOPHYLLACEAE) // chemistry of plant raw material, 2020. № 4. P. 109-119. URL: http://journal.asu.ru/cw/article/view/7432.
Section
Low-molecular weight compounds