SOLID-STATE 13C NMR SPECTROSCOPY IN POLYSACCHARIDE ANALYSIS
UDC 661.728.892:537.635
Abstract
Polysaccharides are high molecular weight compounds represented by long linear and/or branched chains of monosaccharide residues linked by a glycosidic bond. Currently, there is a huge and rapidly-growing interest in the chemistry of polysaccharides due to their widespread use in various spheres of human life. The study of polysaccharide structure is a complex and non-trivial task, and in this area solid-state 13C NMR spectroscopy are widely applied in recent years. The review analyzes the possibilities of solid-state 13C NMR spectroscopy for the study of polysaccharides and natural objects containing polysaccharides. The evolution of 13C solid-state NMR spectroscopy methods is shown with the main focus on the usage of the cross-polarization (CP) technique based on rotating the sample under the magic angle (MAS), since in this case the spectra are obtained without artifacts signals and with the best signal-to-noise ratio and high resolution. The review focuses on cellulose as the most widespread polysaccharide, in addition, the applicability of CP-MAS 13C NMR spectroscopy for the study of other polysaccharides, as well as plant materials, is considered. The represented examples clearly show that CP-MAS 13C NMR spectroscopy is the most powerful experimental method that allows to obtain information on both the composition and structure of polysaccharides, as well as the composition of various plant materials. Moreover, the combination of available equipment and various techniques of solid-state 13C NMR experiment will contribute to the progress of further research in the chemistry of polysaccharides and their derivatives.
Downloads
Metrics
References
Roberts J.D. Encyclopedia of Nuclear Magnetic Resonance, John Wiley & Sons, 2003, vol. 1–9, 8603 p.
Katoh E., Ando I. Encyclopedia of Spectroscopy and Spectrometry (Third Edition), Academic Press, 2017, pp. 75–85. DOI: 10.1016/B978-0-12-803224-4.00283-1.
Tongyin Yu., Mingming G. Progress in Polymer Science, 1990, no. 15 (6), pp. 825–908. DOI: 10.1016/0079-6700(90)90024-U.
Mao J., Cao X., Olk D.C., Chu W., Schmidt-Rohr K. Progress in Nuclear Magnetic Resonance Spectroscopy, 2017, no. 100, pp. 17–51. DOI: 10.1016/j.pnmrs.2016.11.003.
Conte P., Spaccini R., Piccolo A. Progress in Nuclear Magnetic Resonance Spectroscopy, 2004, no. 44(3–4), pp. 215–223. DOI: 10.1016/j.pnmrs.2004.02.002.
Heinze T., Liebert T. Polymer Science: A Comprehensive Reference, Elsevier, 2012, vol. 10, pp. 83–152. DOI: 10.1016/B978-0-444-53349-4.00255-7.
Cui S.W. Food Carbohydrates, Taylor & Francis Group, LLC, 2005, pp. 105–160. DOI: 10.1201/9780203485286.ch3.
Mischnick P., Momcilovic D. Advances in Carbohydrate Chemistry and Biochemistry, 2010, no. 64, pp. 118–210. DOI: 10.1016/S0065-2318(10)64004-8.
Guo N., Bai Z., Jia W., Sun J., Wang W., Chen S., Wang H. Molecules, 2019, no. 24(14), article 2526. DOI: 10.3390/molecules24142526.
Xu J., Wang Q., Li S., Deng F. Solid-State NMR in Zeolite Catalysis, 2019, pp. 1–55. DOI: 10.1007/978-981-13-6967-4_1.
Deschamps M. Annual reports on NMR spectroscopy, 2014, vol. 81, pp. 109–144. DOI: 10.1016/b978-0-12-800185-1.00003-6.
Ghosh M., Sadhukhan S., Dey K.K. Solid State Nuclear Magnetic Resonance, 2019, no. 97, pp. 7–16. DOI: 10.1016/j.ssnmr.2018.11.001.
Gidley M.J. Trends in Food Science & Technology, 1992, no. 3, pp. 231–236. DOI: 10.1016/0924-2244(92)90197-5.
Mohammad R.K. Carbohydrate Polymers, 2010, no. 79 (4), pp. 801–810. DOI: 10.1016/j.carbpol.2009.10.051.
Foston M. Current Opinion in Biotechnology, 2014, no. 27, pp. 176–184. DOI: 10.1016/j.copbio.2014.02.002.
Zhu F. Food Hydrocolloids, 2017, no. 63, pp. 611–624. DOI: 10.1016/j.foodhyd.2016.10.015.
Atalla R.H., Gast J.C., Sindorf D.W., Bartuska V.J., Maciel G.E. Journal of the American chemical society, 1980, no. 102(9), pp. 3249–3251. DOI: 10.1021/ja00529a063.
Earl W.L., VanderHart D.L. Journal of the American chemical society, 1980, no. 102 (9), pp. 3251–3252. DOI: 10.1021/ja00529a064.
Maciel G.E., Kolodziejski W.L., Bertran M.S., Dale B.E. Macromolecules, 1982, no. 15 (2), pp. 686–687. DOI: 10.1021/ma00230a097.
Dudley R.L., Fyfe C.A., Stephenson P.J., Deslandes Y., Hamer G.K., Marchessault R.H. Journal of the American chemical society, 1983, no. 105 (8), pp. 2469–2472. DOI: 10.1021/ja00346a059.
Marchessault R.H., Taylor M.G., Fyfe C.A., Veregin R.P. Carbohydrate Research, 1985, no. 144 (1), pp. C1–C5. DOI: 10.1016/0008-6215(85)85019-9.
Gidley M.J., Bociek S.M. Journal of the American chemical society, 1985, no. 107 (24), pp. 7040–7044. DOI: 10.1021/ja00310a047.
Veregin R.P., Fyfe C.A., Marchessault R.H., Taylor M.G. Macromolecules, 1986, no. 19 (4), pp. 1030–1034. DOI: 10.1021/ma00158a016.
Horii F., Hirai A., Kitamaru R. Macromolecules, 1986, no. 19 (3), pp. 930–932. DOI: 10.1021/ma00157a079.
Veregin R.P., Fyfe C.A., Marchessault R.H. Macromolecules, 1987, no. 20(12), pp. 3007–3012. DOI: 10.1021/ma00178a010.
Morgan K.R., Furneaux R.H., Larsen N.G. Carbohydrate Research, 1995, no. 276 (2), pp. 387–399. DOI: 10.1016/0008-6215(95)00173-Q.
Larsson P.T., Wickholm K., Iversen T. Carbohydrate Research, 1997, no. 302 (1–2), pp. 19–25. DOI: 10.1016/S0008-6215(97)00130-4.
Heux L., Dinand E., Vignon M.R. Carbohydrate Polymers, 1999, no. 40(2), pp. 115–124. DOI: 10.1016/S0144-8617(99)00051-X.
Larsson P.T., Hult E.-L., Wickholm K., Pettersson E., Iversen T. Solid State Nuclear Magnetic Resonance, 1999, no. 15(1), pp. 31–40. DOI: 10.1016/S0926-2040(99)00044-2.
Ibbett R., Domvoglou D., Fasching M. Polymer, 2007, no. 48(5), pp. 1287–1296. DOI: 10.1016/j.polymer.2006.12.034.
Ibbett R., Domvoglou D., Wortmann F., Schuster K.C. Cellulose, 2010, no. 17(2), pp. 231–243. DOI: 10.1007/s10570-010-9397-7.
Östlund Å., Idström A., Olsson C., Larsson P.T., Nordstierna L. Cellulose, 2013, no. 20(4), pp. 1657–1667. DOI: 10.1007/s10570-013-9982-7.
Kono H., Numata Y., Erata T., Takai M. Macromolecules, 2004, no. 37, pp. 5310–5316. DOI: 10.1021/ma030465k.
Mori T., Chikayama E., Tsuboi Y., Ishida N., Shisa N., Noritake Y., Moriya S., Kikuchi J. Carbohydrate Polymers, 2012, no. 90(3), pp. 1197–1203. DOI: 10.1016/j.carbpol.2012.06.027.
Idström A., Schantz S., Sundberg J., Chmelka B.F., Gatenholm P., Nordstierna L. Carbohydrate Polymers, 2016, no. 151, pp. 480–487. DOI: 10.1016/j.carbpol.2016.05.107.
Zuckerstätter G., Terinte N., Sixta H., Schuster K.C. Carbohydrate Polymers, 2013, no. 93(1), pp. 122–128. DOI: 10.1016/j.carbpol.2012.05.019.
Thérien-Aubin H., Zhu X.X. Carbohydrate Polymers, 2009, no. 75(3), pp. 369–379. DOI: 10.1016/j.carbpol.2008.08.010.
Thérien-Aubin H., Janvier F., Baille W.E., Zhu X.X., Marchessault R.H. Carbohydrate Research, 2007, no. 342(11), pp. 1525–1529. DOI: 10.1016/j.carres.2007.04.014.
Błaszczak W., Fornal J., Valverde S., Garrido L. Carbohydrate Polymers, 2005, no. 61(2), pp. 132–140. DOI: 10.1016/j.carbpol.2005.04.005.
Nunes T., Burrows H.D., Bastos M., Feio G., Gil M.H. Polymer, 1995, no. 36(3), pp. 479–485. DOI: 10.1016/0032-3861(95)91556-M.
Isogai A., Kato T., Uryu T., Atalla R.H. Carbohydrate Polymers, 1993, no. 21(4), pp. 277–281. DOI: 10.1016/0144-8617(93)90059-D.
Karrasch A., Jäger C., Karakawa M., Nakatsubo F., Potthast A., Rosenau T. Cellulose, 2008, no. 16(1), pp. 129–137. DOI: 10.1007/s10570-008-9247-z.
Karrasch A., Jäger C., Saake B., Potthast A., Rosenau T. Cellulose, 2009, no. 16(6), pp. 1159–1166. DOI: 10.1007/s10570-009-9304-2.
Kostryukov S.G., Araslankin S.V., Petrov P.S. Khimiya Rastitel'nogo Syr'ya, 2017, no. 4, pp. 31–40. DOI: 10.14258/jcprm.2017041860. (in Russ.).
Araslankin S.V., Kalyazin V.A., Kostryukov S.G., Petrov P.S. Khimiya Rastitel'nogo Syr'ya, 2019, no. 1, pp. 51–62. DOI: 10.14258/jcprm.2019014127. (in Russ.).
Larsen F.H., Schöbitz M., Schaller J. Carbohydrate Polymers, 2012, no. 89 (2), pp. 640–647. DOI: 10.1016/j.carbpol.2012.03.067.
Pisklak D.M., Zielińska- Pisklak M.A., Szeleszczuk Ł., Wawer I. Journal of Pharmaceutical and Biomedical Analysis, 2016, no. 122, pp. 81–89. DOI: 10.1016/j.jpba.2016.01.032.
Pisklak D.M., Zielińska-Pisklak M., Szeleszczuk Ł., Wawer I. Journal of Pharmaceutical and Biomedical Analysis, 2016, no. 122, pp. 29–34. DOI: 10.1016/j.jpba.2016.01.030.
Casaburi A., Montoya Rojo Ú., Cerrutti P., Vázquez A., Foresti M.L. Food Hydrocolloids, 2018, no. 75, pp. 147–156. DOI: 10.1016/j.foodhyd.2017.09.002.
Varma A.J., Chavan V.B., Rajmohanan P.R., Ganapathy S. Polymer Degradation and Stability, 1997, no. 58 (3), pp. 257–260. DOI: 10.1016/S0141-3910(97)00049-9.
Kumar V., Yang T. International Journal of Pharmaceutics, 1999, no. 184 (2), pp. 219–226. DOI: 10.1016/S0378-5173(99)00098-8.
Miura K., Nakano T. Materials Science and Engineering: C, 2015, no. 53, pp. 189–195. DOI: 10.1016/j.msec.2015.04.006.
Dinand E., Vignon M., Chanzy H., Heux L. Cellulose, 2002, no. 9 (1), pp. 7–18. DOI: 10.1023/A:1015877021688.
Amaral H.R., Cipriano D.F., Santos M.S., Schettino M.A., Ferreti J.V.T., Meirelles C.S., Pereira V.S., Cunha A.G., Emmerich F.G., Freitas J.C.C. Carbohydrate Polymers, 2019, no. 210, pp. 127–134. DOI: 10.1016/j.carbpol.2019.01.061.
Rol F., Sillard C., Bardet M., Yarava J.R., Emsley L., Gablin C., Léonard D., Belgacem N., Bras J. Carbohydrate Pol-ymers, 2020, no. 229, article 115294. DOI: 10.1016/j.carbpol.2019.115294.
Focher B., Naggi A., Torri G., Cosani A., Terbojevich M. Carbohydrate Polymers, 1992, no. 17 (2), pp. 97–102. DOI: 10.1016/0144-8617(92)90101-U.
Duarte M.L., Ferreira M.C., Marvão M.R., Rocha J. International Journal of Biological Macromolecules, 2001, no. 28(5), pp. 359–363. DOI: 10.1016/S0141-8130(01)00134-9.
Van de Velde K., Kiekens P. Carbohydrate Polymers, 2004, no. 58(4), pp. 409–416. DOI: 10.1016/j.carbpol.2004.08.004.
Focher B., Naggi A., Torri G., Cosani A., Terbojevich M. Carbohydrate Polymers, 1992, no. 18(1), pp. 43–49. DOI: 10.1016/0144-8617(92)90186-T.
Webster A., Osifo P.O., Neomagus H.W.J.P., Grant D.M. Solid State Nuclear Magnetic Resonance, 2006, no. 30(3–4), pp. 150–161. DOI: 10.1016/j.ssnmr.2006.07.001.
Osiro D., Franco R.W.A., Colnago L.A. Journal of the Brazilian Chemical Society, 2011, no. 22(7), pp. 1339–1345. DOI: 10.1590/s0103-50532011000700020.
Rajamohanan P.R., Ganapathy S., Vyas P.R., Ravikumar A., Deshpande M.V. Journal of Biochemical and Biophysical Methods, 1996, no. 31(3–4), pp. 151–163. DOI: 10.1016/0165-022X(95)00033-N.
Liu Y., Xing R., Yang H., Liu S., Qin Y., Li K., Li P. International Journal of Biological Macromolecules, 2020, no. 148, pp. 424–433. DOI: 10.1016/j.ijbiomac.2020.01.124.
Montroni D., Fermani S., Morellato K., Torri G., Naggi A., Cristofolini L., Falini G. Carbohydrate Polymers, 2019, no. 207, pp. 26–33. DOI: 10.1016/j.carbpol.2018.11.069.
Sinitsya A., Copiková J., Pavliková H. Journal of Carbohydrate Chemistry, 1998, no. 17(2), pp. 279–292. DOI: 10.1080/07328309808002328.
Morgan K.R., Roberts C.J., Tendler S.J.B., Davies M.C., Williams P.M. Carbohydrate Research, 1999, no. 315(1–2), pp. 169–179. DOI: 10.1016/S0008-6215(99)00005-1.
Kobayashi K., Hasegawa T., Kusumi R., Kimura S., Yoshida M., Sugiyama J., Wada M. Carbohydrate Polymers, 2017, no. 177, pp. 341–346. DOI: 10.1016/j.carbpol.2017.09.003.
Pelosi L., Bulone V., Heux L. Carbohydrate Polymers, 2006, no. 66(2), pp. 199–207. DOI: 10.1016/j.carbpol.2006.03.003.
Heyes S.J., Clayden N.J., Dobson C.M. Carbohydrate Research, 1992, no. 233, pp. 1–14. DOI: 10.1016/S0008-6215(00)90916-9.
Jarvis M.C., Apperley D.C. Carbohydrate Research, 1995, no. 275(1), pp. 131–145. DOI: 10.1016/0008-6215(95)00033-p.
Salomonsen T., Jensen H.M., Larsen F.H., Steuernagel S., Engelsen S.B. Carbohydrate Research, 2009, no. 344(15), pp. 2014–2022. DOI: 10.1016/j.carres.2009.06.025.
Lattner D., Flemming H.-C., Mayer C. International Journal of Biological Macromolecules, , 2003, no. 33(1–3), pp. 81–88. DOI: 10.1016/s0141-8130(03)00070-9.
Rochas C., Lahaye M. Solid state Carbohydrate Polymers, 1989, no. 10(3), pp. 189–204. DOI: 10.1016/0144-8617(89)90011-8.
Ha M.-A., Evans B.W., Jarvis M.C., Apperley D.C, Kenwright A.M. Carbohydrate Research, 1996, no. 288, pp. 15–23. DOI: 10.1016/S0008-6215(96)90771-5.
Järvinen R., Silvestre A.J.D., Gil A.M., Kallio H. Journal of Food Composition and Analysis, 2011, no. 24(3), pp. 334–345. DOI: 10.1016/j.jfca.2010.09.022.
Fransen C.T., van Laar H., Kamerling J.P., Vliegenthart J.F. Carbohydrate Research, 2000, no. 328(4), pp. 549–559. DOI: 10.1016/s0008-6215(00)00138-5.
Wawer I., Wolniak M., Paradowska K. Solid State Nuclear Magnetic Resonance, 2006, no. 30(2), pp. 106–113. DOI: 10.1016/j.ssnmr.2006.05.001.
Reddy K.O., Maheswari C.U., Dhlamini M.S., Mothudi B.M., Kommula V.P., Zhang J., Rajulu A.V. Carbohydrate Polymers, 2018, no. 188, pp. 85–91. DOI: 10.1016/j.carbpol.2018.01.110.
Focher B., Palma M.T., Canetti M., Torri G., Cosentino C., Gastaldi G. Industrial Crops and Products, 2001, no. 13(3), pp. 193–208. DOI: 10.1016/S0926-6690(00)00077-7.
Davies L.M., Harris P.J., Newman R.H. Carbohydrate Research, 2002, no. 337(7), pp. 587–593. DOI: 10.1016/S0008-6215(02)00038-1.
Habets S., Wild de P.J., Huijgen W.J.J., van Eck E.R.H. Bioresource Technology, 2013, no. 146, pp. 585–590. DOI: 10.1016/j.biortech.2013.07.104.
Virkki L., Johansson L., Ylinen M., Maunu S., Ekholm P. Carbohydrate Polymers, 2005, no. 59(3), pp. 357–366. DOI: 10.1016/j.carbpol.2004.10.006.
Jiang J., Hu Y., Tian Z., Chen K., Ge S., Xu Y., Tian D., Yang J. Carbohydrate Polymers, 2016, no. 135, pp. 121–127. DOI: 10.1016/j.carbpol.2015.08.084.
Chunilall V., Bush T., Larsson P.T., Iversen T., Kindness A. Holzforschung, 2010, no. 64, pp. 693–698. DOI: 10.1515/HF.2010.097.
Okino E.Y.A., Santana M.A.E., Resck I.S., Alves M.V. da S., Falcomer V.A.S., Cunha J.B.M. da, Santos P.H. de O. dos. Carbohydrate Polymers, 2008, no. 73(1), pp. 164–172. DOI: 10.1016/j.carbpol.2007.11.019.
Popescu C.-M., Larsson P.T., Tibirna C.M., Vasile C. Applied spectroscopy, 2010, no. 64, pp. 1054–60. DOI: 10.1366/000370210792434413.
Mao S.-H., Mao X.-A., Xu Z.-H., Hu J.-Z., Yang B.-L., Li L.-Y., Ye C.-H., Saffigna P. Solid State Nuclear Magnetic Resonance, 1998, no. 12(1), pp. 31–36. DOI: 10.1016/S0926-2040(98)00040-X.
Idström A., Brelid H., Nydén M., Nordstierna L. Carbohydrate Polymers, 2013, no. 92(1), pp. 881–884. DOI: 10.1016/j.carbpol.2012.09.097.
Flores-Morales A., Jiménez-Estrada M., Mora-Escobedo R. Carbohydrate Polymers, 2012, no. 87(1), pp. 61–68. DOI: 10.1016/j.carbpol.2011.07.011.
Duchesne I., Hult E., Molin U., Daniel G., Iversen T., Lennholm H. Cellulose, 2001, no. 8, pp. 103–111. DOI: 10.1023/A:1016645809958.
Zykwinska A., Rondeau-Mouro C., Garnier C., Thibault J.-F., Ralet M.-C. Carbohydrate Polymers, 2006, no. 65(4), pp. 510–520. DOI: 10.1016/j.carbpol.2006.02.012.
Tuo W., Pyae P., Mei H. Solid State Nuclear Magnetic Resonance, 2016, no. 78, pp. 56–63. DOI: 10.1016/j.ssnmr.2016.08.001.
Newman R.H., Redgwell R.J. Carbohydrate Polymers, 2002, no. 49 (2), pp. 121–129. DOI: 10.1016/S0144-8617(01)00323-X.
Zujovic Z., Chen D., Melton L.D. Carbohydrate Research, 2016, no. 420, pp. 51–57. DOI: 10.1016/j.carres.2015.11.006.
Ng J.K.T., Zujovic Z.D., Smith B.G., Johnston J.W., Schröder R., Melton L.D. Carbohydrate Research, 2014, no. 386, pp. 1–6. DOI: 10.1016/j.carres.2013.12.019.
Lahaye M., Rondeau-Mouro C., Deniaud E., Buléon A. Carbohydrate Research, 2003, no. 338(15), pp. 1559–1569. DOI: 10.1016/s0008-6215(03)00241-6.
Meena R., Siddhanta A. K., Prasad K., Ramavat B.K., Eswaran K., Thiruppathi S., Rao P.V.S. Carbohydrate Polymers, 2007, no. 69(1), pp. 179–188. DOI: 10.1016/j.carbpol.2006.09.020.
Arnold A.A., Genard B., Zito F., Tremblay R., Warschawski D.E., Marcotte I. Biochimica et Biophysica Acta (BBA) – Biomembranes, 2015, no. 1848(1), pp. 369–377. DOI: 10.1016/j.bbamem.2014.07.017.
Rodriguez Alonso E., Dupont C., Heux L., Da Silva Perez D., Commandre J.-M., Gourdon C. Energy, 2016, no. 97, pp. 381–390. DOI: 10.1016/j.energy.2015.12.120.
Bardet M., Gerbaud G., Giffard M., Doan C., Hediger S., Le Pape L. Progress in Nuclear Magnetic Resonance Spec-troscopy, 2009, no. 55(3), pp. 199–214. DOI: 10.1016/j.pnmrs.2009.02.001.
Bardet M., Pournou A. Annual Reports on NMR Spectroscopy, 2017, pp. 41–83. DOI: 10.1016/bs.arnmr.2016.07.002.
Paci M., Federici C., Capitani D., Perenze N., Segre A.L. Carbohydrate Polymers, 1995, no. 26(4), pp. 289–297. DOI: 10.1016/0144-8617(95)00011-U.
Copyright (c) 2020 chemistry of plant raw material
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.