BIOMASS OF SOSNOWSKYI'S HOGWEED AS RAW MATERIAL FOR 2D THE CARBONIC NANOSTRUCTURES OBTAINING

UDC 541.64:547.458.84

  • Aleksandr Petrovich Voznyakovskii Scientific Research Institute of Synthetic Rubber named after S.V. L Email: voznap@mail.ru
  • Anatoliy Petrovich Karmanov Institute of Biology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences http://orcid.org/0000-0001-6871-5684 Email: apk0948@yandex.ru
  • Anna Yur'yevna Neverovskaya Scientific Research Institute of Synthetic Rubber named after S.V. Lebedev Email: anna-neverovskaya@yandex.ru
  • Aleksey Aleksandrovich Voznyakovskii Physico-technical Institute named after A.F. Ioffe RAS Email: alexey_inform@mail.ru
  • Lyudmila Sergeyevna Kocheva Institute of Geology, Komi Science Center, Ural Branch of the Russian Academy of Sciences Email: karko07@mail.ru
  • Sergey Viktorovich Kidalov Physico-technical Institute named after A.F. Ioffe RAS Email: kidalov@mail.ioffe.ru
Keywords: Sosnowskyi's hogweed, carbonization, self-propagating high-temperature synthesis, 2D nanocarbon, grafenic nanoplates, carbonic nanostructures

Abstract

The possibility of the carbonization of the Sosnowskyi's hogweed (Heracléum sosnówskyi) biomass for obtaining the carbonic nanmaterials was studied. The characteristic of component composition is given and the parameters of the superficially-porous structure of plant biomass are established. The isotherms of adsorption and desorption of nitrogen on the surface are studied and it is shown that they relate to the type II according to the IUPAC classification. The distribution of times according to the sizes is investigated and it is established that the basic portion of the pore space of the vegetable raw material forms the mezopors with an average width 3.5 of nm. The specific surface area according to Brunauer-Emmet-Teller is determined, which composed 16.4 m2/g. Using a method of the carbonization of organic materials under the effect of local extremely high temperatures and oxidizers the synthesis of nanocarbonic powders, which are formed under the conditions of the self-propagating high-temperature synthesis (SHS method), was carried out. By the methods of spectral analysis (Raman spectroscopy, X-ray diffractometry) and electron microscopy it is shown that from their morphometric parameters the particles of the obtained carbonized product correspond to 2D nanocarbon in the form of grafenic nanoplates. The low-defect planar surface and the presence of the oxygen-containing terminal groups are the characteristic properties of new product. The specific surface area, which composed 179.1 m2/g, is determined. The specific surface area, which composed 179.1 m2/g, is determined. It is established that the micropores introduce the basic contribution to the specific surface area of nanomaterial on the basis of the Sosnowskyi's hogweed biomass.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Aleksandr Petrovich Voznyakovskii, Scientific Research Institute of Synthetic Rubber named after S.V. L

руководитель сектора наногетерогенных полимерных материалов

Anatoliy Petrovich Karmanov, Institute of Biology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences

ведущий научный сотрудник лаборатории миграции радионуклидов и радиохимии

Anna Yur'yevna Neverovskaya, Scientific Research Institute of Synthetic Rubber named after S.V. Lebedev

старший научный сотрудник  сектора наногетерогенных полимерных материалов

Aleksey Aleksandrovich Voznyakovskii, Physico-technical Institute named after A.F. Ioffe RAS

младший научный сотрудник лаборатории физики кластерных структур

Lyudmila Sergeyevna Kocheva, Institute of Geology, Komi Science Center, Ural Branch of the Russian Academy of Sciences

ведущий научный сотрудник лаборатории технологии минерального сырья

Sergey Viktorovich Kidalov, Physico-technical Institute named after A.F. Ioffe RAS

старший научный сотрудник лаборатории физики кластерных структур

References

Jakubska-Busse A., Śliwiński M., Kobyłka M. Archives of Biological Sciences, 2013, vol. 65, no. 3, pp. 877–883. DOI: 10.2298/ABS1303877J.

Shakhmatov E.G., Atukmaev K.V., Makarova E.N. Carbohydrate polymers, 2016, vol. 136, pp. 1358–1369. DOI: 10.1016/j.carbpol.2015.10.041.

Patova O.A., Golovchenko V.V., Vityazev F.V., Burkov A.A., Belyi V.A., Kuznetsov S.N., Litvinets S.G., Martin-son E.A. Food Hydrocolloids, 2017, vol. 65, pp. 77–86. DOI: 10.1016/j.foodhyd.2016.10.042.

Voznyakovskii A.P., Savkin D.I., Kalinin A.V., Shugalei I.V., Krutov S.M., Mazur A.S. Russian Journal of General Chemistry, 2016, vol. 86, no. 13, pp. 3008–3011. DOI: 10.1134/S1070363216130132.

Smith A.T., LaChance A.M., Zeng S., Liu B., Sun L. Nano Materials Science, 2019, vol. 1, no. 1, pp. 31–47. DOI: 10.1016/j.nanoms.2019.02.004.

Xiong R., Hu K., Grant A.M., Ma R., Xu W., Lu C., Zhang X., Tsukruk V.V. Advanced Materials, 2016, vol. 28, no. 7, pp. 1501–1509. DOI: 10.1002/adma.201504438.

Zhu C., Guo S., Fang Y., Dong S. ACS nano, 2010, vol. 4, no. 4, pp. 2429–2437. DOI: 10.1021/nn1002387.

Bacakova L., Pajorova J., Tomkova M., Matejka R., Broz A., Stepanovska J., Prazak S., Skogberg A., Siljander S., Kallio P. Nanomaterials, 2020, vol. 10, no. 2, p. 196. DOI: 10.3390/nano10020196.

Bae J. Journal of Electrochemical Science and Technology, 2018, vol. 9, no. 4, pp. 251–259. DOI: 10.5229/JECST.2018.9.4.251.

Nishchakova A.D., Bulushev D.A., Stonkus O.A., Asanov I.P., Ishchenko A.V., Okotrub A.V., Lyubov G.B, Bu-lusheva L.G. Energies, 2019, vol. 12, no. 21, p. 4111. DOI: 10.3390/en12214111.

Aacharya R., Chhipa H. Carbon Nanomaterials for Agri-Food and Environmental Applications, 2020, pp. 297–321. DOI: 10.1016/B978-0-12-819786-8.00015-3.

Dong H., Dong C., Ren T., Li Y., Shi D. Journal of biomedical nanotechnology, 2014, vol. 10, no. 9, pp. 2086–2106. DOI: 10.1166/jbn.2014.1989.

Voznyakovskii A.P., Neverovskaya A.Yu., Otvalko Ja.A., Gorelova E.V., Zabelina A.N. Nanosystems: physics, chem-istry, mathematics, 2018, vol. 9, no. 1, pp. 125–128.

Khan M.Y., Khan A., Adewole J.K., Naim M., Basha S.I., Aziz M.A. Journal of Natural Gas Science and Engineer-ing, 2020, 103156. DOI: 10.1016/j.jngse.2020.103156.

Voznyakovskii A.P., Savkin D.I., Kalinin A.V., Shugalei I.V., Krutov S.M., Mazur A.S. Russ. J. Gen. Chem., 2016, vol. 86, pp. 3008–3011. DOI: 10.1134/S1070363216130132.

Voznyakovskiy A.A., Voznyakovskiy A.P., Kidalov S.V., Osipov V.K. Zhurnal strukturnoy khimii, 2020, vol. 61, no. 5, pp. 869–876. DOI: 10.26902/JSC_id55453. (in Russ.).

Bazarnova N.G. Khimiya drevesiny i yeye osnovnykh komponentov. [Chemistry of wood and its main components]. Barnaul, 2002. 50 p. (in Russ.).

Musikhin P.V., Sigayev A.I. Fundamental'nyye issledovaniya, 2006, no. 3, pp. 65–67. (in Russ.).

Rokmana A.W., Asriani A., Suhendar H., Triyana K., Kusumaatmaja A., Santoso I. Journal of Physics: Conference Se-ries, 2018, vol. 1011, no. 1, 012007. DOI: 10.1088/1742-6596/1011/1/012007.

Sehrawat P., Islam S.S., Mishra P., Ahmad S. Scientific reports, 2018, vol. 8, no. 1, pp. 1–13. DOI: 10.1038/s41598-018-21686-2.

Johra F.T., Lee J.W., Jung W.G. Journal of Industrial and Engineering Chemistry, 2014, vol. 20, no. 5, pp. 2883–2887. DOI: 10.1016/j.jiec.2013.11.022.

Patterson A.L. Phys. Rev., 1939, vol. 56, no. 10, pp. 978–982.

Published
2020-12-21
How to Cite
1. Voznyakovskii A. P., Karmanov A. P., Neverovskaya A. Y., Voznyakovskii A. A., Kocheva L. S., Kidalov S. V. BIOMASS OF SOSNOWSKYI’S HOGWEED AS RAW MATERIAL FOR 2D THE CARBONIC NANOSTRUCTURES OBTAINING // chemistry of plant raw material, 2020. № 4. P. 83-92. URL: http://journal.asu.ru/cw/article/view/7739.
Section
Biopolymers of plants