BIOTECHNOLOGICAL POTENTIAL OF THE SIBERIAN STRAINS OF BASIDIOMYCETES – PRODUCERS OF LIG-NOLYTIC AND CELLULOLYTIC ENZYMES

UDC 579.66

  • Yuliya Aleksandrovna Litovka Institute of Forest named after V.N. Sukachev SB RAS, FRC KSC SB RAS; Siberian State University of Science and Technology named after academician M.F. Reshetneva Email: litovkajul@rambler.ru
  • Igor' Nikolayevich Pavlov Institute of Forest named after V.N. Sukachev SB RAS, FRC KSC SB RAS; Siberian State University of Science and Technology named after academician M.F. Reshetneva Email: forester24@mail.ru
  • Polina Vasil'yevna Makolova Institute of Forest named after V.N. Sukachev SB RAS, FRC KSC SB RAS Email: polinochka-makolova@rambler.ru
  • Anton Alekseyevich Timofeev Krasnoyarsk Scientific Center SB RAS Email: timofeyev95@gmail.com
  • Ekaterina Alekseyevna Litvinova Siberian State University of Science and Technology named after academician M.F. Reshetneva; Krasnoyarsk Scientific Center SB RAS Email: litvinovaek22@ya.ru
  • Anastasiya Aleksandrovna Vasil'eva Siberian State University of Science and Technology named after academician M.F. Reshetneva Email: drroptimusprime@gmail.com
  • Aleksandr Vasil'yevich Shabanov Krasnoyarsk Scientific Center SB RAS; Institute of Physics L.V. Kirensky SB RAS Email: alexch_syb@mail.ru
Keywords: biodegradation, xylotrophs, basidiomycetes, plant substrates, hydrodynamic activation, solid-phase and deep cultivation, cellulases, ligninases

Abstract

The results of a study of the wood-destroying properties of Siberian strains of xylotrophic basidiomycetes (Armillaria, Ganoderma, Fomitopsis, Heterobasidion and Porodaedalea) are presented. The growth parameters and enzymatic activity of the strains were determined during solid-phase and deep cultivation. Fomitopsis pinicola and Ganoderma lucidum are fast-growing fungi on cellulose-, tannin-containing nutrient media, coniferous and deciduous plant substrates (source and hydrodynamically activated). The growth coefficient on media with tannin and Na-carboxymethyl cellulose is more than 45; on plant substrates - more than 30. The strains exhibit a different growth reaction to the preliminary activation of birch sawdust (growth acceleration / growth slowdown / indifference). The maximum wood-destroying activity on wood of A. sibirica noted for the fungi A. borealis, G. tsugae, G. lucidum, F. pinicola, and P. niemelaei. The decrease in substrate mass was 8–11%; the amount of polysaccharides decreased on average 1.4 times mainly due to the fermentolysis of hard-hydrolyzable polysaccharides. High enzymatic activity of fungi observed during solid-phase and deep cultivation with an inducer. The maximum activity of phenol oxidase is characteristic of G. tsugae (1.21 units/g·s); carboxymethyl cellulase – for F.pinicola and G. lucidum strains (11.8 and 10.3 units/ml, respectively); xylanases – for H. abietinum (3.8 u/ml). The maximum accumulation of extracellular protein observed in F. pinicola (0.89 mg/ml). According to the totality of rapid test indicators, quantitative determination of enzymatic activity, growth parameters on lignocellulosic substrates and the degree of wood bioconversion, the most promising producer of lignolytic enzymes in vitro is the Gl4-16A Ganoderma lucidum strain; cellulolytic enzymes – strain Fp6-17 Fomitopsis pinicola.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Yuliya Aleksandrovna Litovka, Institute of Forest named after V.N. Sukachev SB RAS, FRC KSC SB RAS; Siberian State University of Science and Technology named after academician M.F. Reshetneva

доктор биологических наук, старший научный сотрудник, профессор кафедры химической технологии древесины и биотехнологии, тел. (391) 227-36-54

Igor' Nikolayevich Pavlov, Institute of Forest named after V.N. Sukachev SB RAS, FRC KSC SB RAS; Siberian State University of Science and Technology named after academician M.F. Reshetneva

доктор биологических наук, профессор, заведующий лабораторией лесных культур, микологии и фитопатологии, заместитель директора по научной работе, заведующий кафедрой химической технологии древесины и биотехнологии, тел. (391) 227-36-54

Polina Vasil'yevna Makolova, Institute of Forest named after V.N. Sukachev SB RAS, FRC KSC SB RAS

младший научный сотрудник лаборатории лесных культур, микологии и фитопатологии

Anton Alekseyevich Timofeev, Krasnoyarsk Scientific Center SB RAS

младший научный сотрудник лаборатории геномных исследований и биотехнологии

Ekaterina Alekseyevna Litvinova, Siberian State University of Science and Technology named after academician M.F. Reshetneva; Krasnoyarsk Scientific Center SB RAS

ассистент кафедры химической технологии древесины и биотехнологии, младший научный сотрудник лаборатории геномных исследований и биотехнологии

Anastasiya Aleksandrovna Vasil'eva, Siberian State University of Science and Technology named after academician M.F. Reshetneva

студент

Aleksandr Vasil'yevich Shabanov, Krasnoyarsk Scientific Center SB RAS; Institute of Physics L.V. Kirensky SB RAS

кандидат физико-математических наук, старший научный сотрудник лаборатории молекулярной спектроскопии

References

Kulikova N.A., Klyayn O.I., Stepanova Ye.V., Korolova O.V. Prikladnaya biokhimiya i mikrobiologiya, 2011, vol. 47, no. 6, pp. 619–634. (in Russ.).

Fodorova T.V., Shakhova N.V., Klyayn O.I., Glazunova O.A., Maloshenok L.G., Kulikova N.A., Psurtseva N.V., Korolova O.V. Prikladnaya biokhimiya i mikrobiologiya, 2013, vol. 49, no. 6, pp. 570–579. (in Russ.).

Mukhin V.A., Veselkin D.V., Bryndina Ye.V. Gribnyye soobshchestva lesnykh ekosistem. [Mushroom communities of forest ecosystems]. Moscow; Petrozavodsk, 2000, pp. 26–36. (in Russ.).

Baldrian P. British Mycological Society Symposia Series, 2008, vol. 28, pp. 19–41.

Yoon J.J., Kim Y.K. J. Microbiol., 2005, vol. 43 (6), pp. 487–492.

Yoon J.J., Cha C.J., Kim Y.S., Kim W. Biotechnol Lett., 2008, vol. 30 (8), pp. 1373–1378.

Litovka YU.A., Pavlov I.N., Ryazanova T.V., Gazizulina A.V., Chuprova N.A. Khimiya rastitel'nogo syr'ya, 2018, no. 1, pp. 193–199. DOI: 10.14258/jcprm.2018012729.

Shin K., Kim Y.H., Jeya M., Lee J.K., Kim Y.S. Journal of microbiology and biotechnology, 2010, vol. 20 (12), pp. 1681–1688.

Machuca A., Ferraz A. Enzyme and Microbial Technology, 2001, vol. 29 (6), pp. 386–391.

Valášková V., Baldrian P. Microbiology, 2006, vol. 152 (12), pp. 3613–3622.

Hastrup A.C., Howell C., Larsen F.H., Sathitsuksanoh N., Goodell B., Jellison J. Fungal Biol., 2012, vol. 116 (10), pp. 1052–1063.

Kim Y.S., Wi S.G., Lee K.H., Singh A.P. Holzforschung, 2002, vol. 56 (1), pp. 7–12.

Quiroz-Castaeda R.E., Balcazar-Lopez E., Dantan-Gonzalez E., Martinez A., Folch-Mallol J., Anaya C.M. Electron J Biotechnol., 2009, vol. 12, pp. 1–8.

Salvachúa D., Prieto A., López-Abelairas M., Lu-Chau T., Martínez Á.T., Martínez M.J. Bioresource technology, 2011, vol. 102 (16), pp. 7500–7506.

Saha B.C., Kennedy G.J., Qureshi N., Cotta M.A. Biotechnology Progress, 2017, vol. 33(2), pp. 365–374.

Govumoni S.P., Gentela J., Koti S., Haragopal V., Venkateshwar S., Rao L.V. International Journal of Current Mi-crobiology and Applied Sciences, 2015, vol. 4(10), pp. 700–710.

Montoya S., Sanchez O.J., Levin L. African Journal of Biotechnology, 2015, vol. 14 (15), pp. 1304–1317.

Elisashvili V., Kachlishvili E., Tsiklauri N., Metreveli E., Khardziani T., Agathos S.N. World J Microbiol Biotechnol., 2009, vol. 25(2), pp. 331–339.

Elisashvili V., Penninckx M., Kachlishvili E., Tsiklauri N., Metreveli E., Kharziani T., Kvesitadze G. Bioresource Tech-nology, 2008, vol. 99, no. 3, pp. 457–462.

Jaana K., Miia M.R., Jarkko I., Ilona O., Taina L. BMC Microbiology, 2015, vol. 15(217), pp. 1–18.

Pavlov I.N., Litovka Yu.A., Ryazanova T.V., Chuprova N.A., Litvinova E. A., Putintseva Y.A., Kües U., Krutov-sky K.V. J. Sib. Fed. Univ. Biol., 2018, vol. 11, no. 1, pp. 30-48. DOI: 10.17516/1997-1389-0039.

Metody eksperimental'noy mikologii [Methods of experimental mycology], ed. V.I. Bilay. Kiev, 1982, 550 p. (in Russ.).

Alves E., Lucas G.C., Pozza E.A., Alves M.de C. Laboratory Protocols in Fungal Biology: Current Methods in Fun-gal Biology, Springer Science + Business Media, LLC, 2013, pp. 133–150.

Bradner J.R., Gillings M., Nevalainen K.M.H. World Journal of Microbiology & Biotechnology, 1999, vol. 15, pp. 131–132.

Bukhalo A.S. Vysshiye s"yedobnyye bazidiomitsety v chistoy kul'ture. [Higher edible Basidiomycetes in pure culture]. Kiev, 1988, 144 p. (in Russ.).

Riazanova T.V., Chuprova N.A., Isaeva E.V. Wood Chemistry, LAP LAMBERT Academic Publishing, 2012, 428 p.

Fiziologiya rasteniy [Plant Physiology], ed. I.P. Yermakov. Moscow, 2005, 640 p. (in Russ.).

Sinitsyn A.P., Gusakov A.V., Chernoglazov V.M. Biokonversiya lignotsellyuloznykh materialov. [Bioconversion of lignocellulosic materials]. Moscow, 1995, 224 p. (in Russ.).

Bradford M.M. Anal. Biochem., 1976, vol. 72, pp. 248–254.

Published
2020-12-21
How to Cite
1. Litovka Y. A., Pavlov I. N., Makolova P. V., Timofeev A. A., Litvinova E. A., Vasil’eva A. A., Shabanov A. V. BIOTECHNOLOGICAL POTENTIAL OF THE SIBERIAN STRAINS OF BASIDIOMYCETES – PRODUCERS OF LIG-NOLYTIC AND CELLULOLYTIC ENZYMES // chemistry of plant raw material, 2020. № 4. P. 371-383. URL: http://journal.asu.ru/cw/article/view/8396.
Section
Technology