INTENSIFICATION OF HEAT EXCHANGE IN DIABATIC RECTIFICATION COLUMNS
UDC 66.015.23
Abstract
The heat exchange in a diabatic column was investigated during the rectification of an ethanol-water mixture, in which partial condensation of rising vapors on the surface of vertical heat exchange tubes installed vertically along the height of the installation was carried out, as well as the evaporation of intermediate condensate on the surface of horizontal plates.
Based on the review of diabatic columns, it is shown that they can reduce the cost of conducting the rectification process.
Heat-exchange devices placed on trays of rectification units are considered and ways to intensify heat transfer in them are proposed.
It has been established that the most efficient heat removal in heat exchangers of diabatic columns is achieved when using a film flow of a coolant on a heat transfer surface.
Heat transfer in a diabatic column is investigated during gravitational flow of surfaces of heat exchange tubes, as well as when organizing an ascending and descending co-current film flow, both in the case of heating and boiling of the coolant.
To intensify heat transfer in the coolant film, a helical artificial roughness was installed on the surface of the pipes, made in the form of a wire spiral tightly mounted on the heat transfer surface.
The geometric parameters of the helical roughness, such as the distance between the turns of the spiral and the height of the wire, which have the greatest influence on the intensity of heat transfer, have been established.
Dependences for determining the value of the heat transfer coefficient are presented and an estimate of the value of the specific heat flux in the diabatic column is given.
Downloads
Metrics
References
Agrawal R., Babi D.K., Blagov S., Caballero J.A., Gani R., Gmehling J., Grossmann I.E., Harwardt A., Jobson M., Kenig E.Y., Kleiber M., Kockmann N., Kooijman H.A., Marquardt W., Shah V.H., Skiborowski M., Sorensen E., Taylor R. List of Contributors. Academic Press, Boston, 2014, pp. xi–xii. DOI: 10.1016/B978-0-12-386547-2.01002-4.
Kiss A.A., Flores Landaeta S.J., Infante Ferreira C.A. Energy, 2012, vol. 47, pр. 531–542. DOI: 10.1016/j.energy.2012.09.038.
Ognisty T.P. Chemical Engineering Progress (United States), 1995, vol. 91, p. 2.
Kiss A.A. Advanced Distillation Technologies, 2013, pр. 37–65. DOI: 10.1002/9781118543702.ch2.
Le Goff P., Cachot Т., Rivero R. Chemical Engineering and Technology, 1996, vol. 19, pр. 478–485. DOI: 10.1002/ceat.270190603.
Sauar Е., Rivero R., Kjelstrup S., Lien K.M. Energy Conversion and Management, 1997, vol. 38, pр. 1777–1783. DOI: 10.1016/s0196-8904(96)00201-4.
Rivero R., Garcia M., Urquiza J. Energy, 2004, vol. 29, pр. 467–489. DOI: 10.1016/j.energy.2003.10.007.
Røsjorde А., Kjelstrup S. Chemical Engineering Science, 2005, vol. 60, pр. 1199–1210. DOI: 10.1016/j.ces.2004.09.059.
Schaller М., Hoffmann K.H., Siragusa G., Salamon P., Andresen B. Computers and Chemical Engineering, 2001, vol. 25, pр. 1537–1548. DOI: 10.1016/S0098-1354(01)00717-7.
Olujic Z., Fakhri F., De Rijke A., De Graauw J., Jansens P.J. Journal of Chemical Technology and Biotechnology, 2003, vol. 78, pр. 241–248. DOI: 10.1002/jctb.761.
Kiss A.A. Journal of Chemical Technology and Biotechnology, 2014, vol. 89, pр. 479–498.
Olujić Ž., Jödecke M., Shilkin A., Schuch G., Kaibel B. Chemical Engineering and Processing: Process Intensification, 2009, vol. 48, pр. 1089–1104.
Agrawal R., Fidkowski Z.T. Industrial and Engineering Chemistry Research, 1996, vol. 35, pр. 2801–2807.
Jimenez E.S., Salamom P., Rivero R., Rendon C., Hoffmann K.H., Schaller M., Andreeen B. Industrial and Engineering Chemistry Research, 2014, vol. 43, pр. 7566–7571.
Calzon-McConville C.J., Rosales-Zamora M.B., Hernández S., Segovia-Hernández J.G., Rico-Ramírez V. Industrial and Engineering Chemistry Research, 2006, vol. 45, pр. 724–732.
Fonyo Z. Int. Chem. Eng., 1974, vol. 14, pр. 18–27.
Rivero R. Energy, 2001, vol. 26, pр. 561–593.
De Koeijer G., Røsjorde A., Kjelstrup S. Energy, 2004, vol. 29, pр. 2425–2440.
De Koeijer G.M., Kjelstrup S., Salamon P., Siragusa G., Schaller M., Hoffmann K.H. Industrial and Engineering Chemistry Research, 2002, vol. 41, pр. 5826–5834.
Voinov N.A., Zemtsov D.A., Pan’kov V.A. Chemical and Petroleum Engineering, 2016, vol. 52, pр. 515–524.
Voinov N.A., Zemtsov D.A., Zhukova O.P. Theoretical Foundations of Chemical Engineering, 2017, vol. 51, pр. 191–199.
Kirschbaum E., Tröster E. Chemie Ingenieur Technik., 1960, vol. 32, pр. 395–400.
Blaß E. Chemie Ingenieur Technik., 1973, vol. 45, pр. 865–872.
Ito A., Asano K. Chemical Engineering Science, 1982, vol. 37, pр. 1007–1014.
Cave S.D., Mazzarotta B., Sebastiani E. The Canadian Journal of Chemical Engineering, 1987, vol. 65 (4), pр. 559–564. DOI: 10.1002/cjce.5450650405
Kh'yuitt Dzh., Kholl-Teylor N. Kol'tsevyye dvukhfaznyye techeniya. [Ring two-phase flows]. Moscow, 1974, 408 p. (in Russ.).
Voinov N.A., Zhukova O.P., Nikolaev A.N. Theoretical Foundations of Chemical Engineering, 2012, vol. 46, pр. 359–367. DOI: 10.1134/S0040579512030104.
Voynov N.A., Frolov A.S., Zhukova O.P. Teoreticheskiye osnovy khimicheskoy tekhnologii, 2019, vol. 53, no. 2, pp. 160–167. DOI: 10.1134/S0040357119010172. (in Russ.).
Voynov N.A., Zhukova O.P., Kozhukhova N.Yu., Bogatkova A.V., Deryagina N.V. Khvoynyye boreal'noy zony, 2018, vol. 36, no. 1, pp. 28–31. (in Russ.).
Copyright (c) 2020 chemistry of plant raw material
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.