INFLUENCE OF LIGNIN CONCENTRATION ON VISCOELASTIC PROPERTIES OF ITS MODIFIED FORM OB-TAINED BY SOL-GEL METHOD IN THE PRESENCE OF ALUMINUM-SILICON COMPOUNDS

UDC 544.032.72

Keywords: rheological properties, kinematic viscosity, shear stress, sulfate lignin, modification, sol-gel method

Abstract

The concept and flow model of a structured dispersed system obtained on the basis of sulfate lignin modified by Sol-gel method in the presence of aluminum-containing components in the form of nepheline concentrate are considered. The systems are mainly systems of non-Newtonian behavior, characterized by phenomena of destruction and formation of new structures in the shear flow, and the nature of the flow depends on the characteristics of interaction between system components, which are defined as their concentrations, and process conditions of the synthesis, at which the change of the adhesion forces between particles and at the moment cannot be generalized and described existing well-known equations of flow.As a result of the study, it was found that an increase in the concentration of sulfate lignin under various synthesis conditions, but with a constant amount of mineral component, leads to the formation of a new modified product, while there is a tendency to increase the parameters of kinematic viscosity and shear stress at the corresponding pH values of synthesis. Under conditions of excessive lignin concentrations of more than 400 mg/dm3, when self-organizing in the matrix of a new form, lignin dominance leads to a decrease in the strength characteristics of the polymer for all its forms obtained at different pH values. It is established that the kinematic viscosity and shear stress of water dispersions in this system depend on both the pH value of their synthesis and the concentration of the initial lignin, which determines the mechanisms of self-organization of the new modified structure.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Anastasiya Igorevna Smirnova, Saint Petersburg state University of industrial technologies and design. Higher school of technology and energy

кандидат химических наук, доцент кафедры физической и коллоидной химии

Alla Borisovna Dyagileva, Saint Petersburg state University of industrial technologies and design. Higher school of technology and energy

доктор химических наук, доцент кафедры охраны окружающий среды и рационального использования природных ресурсов

Aleksandra Yevgen'yevna Prismakova, LLC "RUS-Polymer"

генеральный директор

Ol'ga Yur'yevna Derkacheva, Saint Petersburg state University of industrial technologies and design. Higher school of technology and energy

кандидат химических наук, доцент кафедры физики

References

Bochkarova S.S. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya, 2016, vol. 6, no. 3, pp. 81–93. DOI: 10.21285/2227-2925-2016-6-3-81-93. (in Russ.).

Shabanova N.A., Sarkisov P.D. Zol'-gel' tekhnologii. Nanodispersnyy kremnezem. [Sol-gel technology. Nanosized sil-ica]. Moscow, 2015, 331 p. (in Russ.).

Belgacem M.N., Gandini A. Monomers, Polymers and Composites from Renewable Resources. Elsevier, 2008, 562 p.

Karmanov A.P., Kocheva L.S., Belyayev V.Yu., Brovko O.S., Ovodov Yu.S. Izvestiya VUZov. Lesnoy zhurnal, 2013, no. 4, pp. 86–96. (in Russ.).

Patent 2524343 (RU). 2014. (in Russ.).

Prismakova A.Ye., Dyagileva A.B., Smirnova A.I. Izvestiya VUZov. Lesnoy zhurnal, 2018, no. 3, pp. 137–148. DOI: 10.17238/0536-1036.2018.3.137. (in Russ.).

Smirnova A.I., Dyagileva A.B., Prismakova A.Ye. Zhurnal prikladnoy khimii, 2018, vol. 91, no. 11, pp. 1633–1641. DOI: 10.1134/S0044461818110142. (in Russ.).

Kurochkina G.N., Pinskiy D.L. Pochvovedeniye, 2004, no. 4, pp. 441–451. (in Russ.).

Lozovik P.A., Musatova (Zobkova) M.V., Ryzhakov A.V. Voda: khimiya i ekologiya, 2014, no. 4, pp. 11–17. (in Russ.).

Kosarevich I.V. Strukturoobrazovaniye v dispersiyakh sapropeley. [Structure formation in sapropel dispersions]. Minsk, 1990, 247 p. (in Russ.).

Plaksin G.V. Krivonos O.I. Rossiyskiy khimicheskiy zhurnal, 2007, vol. 51, no. 4, pp. 140–148. (in Russ.).

Patent 2658907 (RU). 2018. (in Russ.).

Moreva Yu.L., Alekseyeva N.S., Chernoberezhskiy Yu.M. Kolloidnyy zhurnal, 2011, vol. 73, no. 3, pp. 359–363. (in Russ.).

Budnyak T.M., Aminzadeh S., Pylypchuk I.V., Riazanova A.V., Tertуkh V.A., Lindstrom M.E., Sevastyanova O. Na-nomaterials, 2018, no. 8(11), 950. DOI: 10.3390/nano8110950.

Thakur S., Govender P.P., Mamo M.A., Tamulevicius S., Mishra Y.K., Thakur V.K. Vacuum, 2017, vol. 146, pp. 342–355. DOI: 10.1016/J.VACUUM.2017.05.032.

Malkin A.Ya. Vysokomolekulyarnyye soyedineniya. Seriya A, 2009, vol. 51, no. 1, pp. 106–136. (in Russ.).

Karmanov A.P. Samoorganizatsiya i strukturnaya organizatsiya lignina. [Self-organization and structural organization of lignin]. Yekaterinburg, 2004, 269 p. (in Russ.).

Pertsev V.T., Ledenev A.A., Usachev S.M., Usachev A.M. Kondensirovannyye sredy i mezhfaznyye granitsy, 2016, vol. 18, no. 3, pp. 394–401. (in Russ.).

Patent 1497517A1. (SU) 1989. (in Russ.).

Rudakova I.A., Molodkina L.M., Chernoberezhskiy Yu.M., Dyagileva A.B. Kolloidnyy zhurnal, 2007, vol. 69, no. 2, pp. 261–264. (in Russ.).

Derkacheva O., Sukhov D. Macromolecular Symposium, 2008, vol. 265, no. 1, pp. 61–68. DOI: 10.1002/masy.200850507.

Derkacheva O.Yu., Sukhov D.A., Fedorov A.V. Vestnik TvGU. Seriya: Khimiya, 2017, no. 1, pp. 64–71. (in Russ.).

Malkin A.Ya., Isayev A.I. Reologiya: kontseptsii, metody, prilozheniya. [Rheology: concepts, methods, applications]. St.-Petersburg, 2007, 560 p. (in Russ.).

Chernoberezhskiy Yu.M., Atenesyan A.A., Dyagileva A.B., Lorentsson A.V. Leshchenko T.V. Zhurnal prikladnoy khimii, 2002, vol. 75, no. 7, pp. 1189–1192. (in Russ.).

Honig E.H., Punt W.F.J., Offermns P.H.G. J. Colloid. Interface Sci., 1990, vol. 134, pp. 169–173. DOI: 10.1016/S0021-9797(02)00218-7.

Shram G. Osnovy prakticheskoy reologii i reometrii. [Fundamentals of practical rheology and rheometry]. Moscow, 2003, 312 p. (in Russ.).

Matveyenko V.N., Kirsanov Ye.A. Vestn. Mosk. un-ta. Seriya: Khimiya, 2011, vol. 52, no. 4, pp. 243–276. (in Russ.).

Khlebnikov V.N. Trudy Rossiyskogo gosudarstvennogo universiteta nefti i gaza im. I.M. Gubkina, 2009, no. 2, pp. 25–31. (in Russ.).

Strelko V.V. Kolloidnyy zhurnal, 1970, vol. 32, no. 3, pp. 430–436. (in Russ.).

Shabanova N.A., Belova I.A. Fizika i khimiya stekla, 2012, vol. 38, no. 2, pp. 294–298. (in Russ.).

Nazarenko V.A., Antonovich V.P., Nevskaya Ye.M. Gidroliz ionov metallov v razbavlennykh rastvorakh. [Hydrolysis of metal ions in dilute solutions]. Moscow, 1979, 192 p. (in Russ.).

Barnes Y.F. Theoretical and Applied Rheology. Brussels, 1992, 576 p.

Dey A., Modarres-Sadeghi Y., Rothstein J. Journal of Fluid Mechanics, 2017, vol. 813, R5. DOI: 10.1017/jfm.2017.15.

Kulichikhin V.G., Semakov A.V., Karbushev V.V., Plate N.A., Picken S.J. Vysokomolek. Soyedineniya, 2009, vol. 51, no. 11, pp. 2044–2053. (in Russ.).

Published
2021-09-27
How to Cite
1. Smirnova A. I., Dyagileva A. B., Prismakova A. Y., Derkacheva O. Y. INFLUENCE OF LIGNIN CONCENTRATION ON VISCOELASTIC PROPERTIES OF ITS MODIFIED FORM OB-TAINED BY SOL-GEL METHOD IN THE PRESENCE OF ALUMINUM-SILICON COMPOUNDS // chemistry of plant raw material, 2021. № 3. P. 123-133. URL: http://journal.asu.ru/cw/article/view/8697.
Section
Biopolymers of plants