X-RAY STRUCTURAL ANALYSIS OF COTTONS AND HERBACEOUS CELLULOSE
UDC 661.728
Abstract
It was found that the extrusion treatment of cotton cellulose in an aqueous medium, followed by drying and grinding on a hammer mill leads to a decrease in the crystallite size in the transverse direction ([110] and [100]) as a result of mechanical destruction of cellulose macromolecules, and the subsequent acid hydrolysis of cellulose in H2SO4 solutions to an increase in the size of crystallites in the transverse direction ([110], [110] and [100]) due to co-crystallization processes. It is shown that alkaline cooking of cellulose-containing material, followed by extrusion processing, washing, drying and grinding on a hammer mill leads to an increase in the transverse dimensions of crystallites in the [110] and [100] directions for flax cellulose and in the [110], [110] and [100] – for cellulose from oats and alfalfa as a result of partial removal of lignin and hemicelluloses from the cellulose-containing material.
Differences were revealed in the sizes of the coherent scattering regions and the parameters of the crystallographic cell of cellulose samples from cotton and herbaceous plants (flax, oats, and alfalfa), as well as between samples from oats and alfalfa obtained under the same conditions with the same type of feedstock (straw).
It has been established that the proposed stepwise technology for processing cotton and linen fibers leads to a slight decrease in the degree of crystallinity and the average degree of polymerization, which indicates that the developed technology for obtaining high-viscosity powder celluloses for various purposes is promising.
Correlation coefficients are established between the values of the degree of ordering of the structure of cellulose samples from various plant raw materials, calculated using X-ray diffraction analysis and FT-IR spectroscopy, which make it possible to adequately compare all the known literature and experimental data.
Downloads
Metrics
References
Valishina Z.T., Kostochko A.V., Matukhin Ye.L., Aleksandrov A.A. Vestnik Kazanskogo tekhnologicheskogo univer-siteta, 2013, vol. 16, no. 20, pp. 62–64. (in Russ.).
Prosvirnikov D.B., Safin R.G., Gaynullina D.Sh., Prosvirnikova T.D. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2014, vol. 17, no. 17, pp. 109–112. (in Russ.).
Noskova O.A., Zyryanova O.A., Vel'mozhin S.D. Vestnik PNIPU, 2016, vol. 24, pp. 57–68. DOI: 10.15593/2224-9400/2016.4.04. (in Russ.).
Autlov S.A., Bazarnova N.G., Kushnir Ye.Yu. Khimiya rastitel'nogo syr'ya, 2013, no. 3, pp. 33–41. DOI: 10.14258/jcprm.1303033. (in Russ.).
Momzyakova K.S., Deberdeyev T.R., Vershinin M.S., Leksin V.V., Momzyakov A.A., Deberdeyev R.Ya. Khimiya rastitel'nogo syr'ya, 2019, no. 3, pp. 15–21. (in Russ.).
Kostochko A.V., Shipina O.T., Valishina Z.T., Garayeva M.R., Aleksandrov A.A. Vestnik Kazanskogo tekhnolog-icheskogo universiteta, 2010, no. 9, pp. 109–112. (in Russ.).
Nugmanov O.K., Grigor'yeva N.P., Lebedev N.A. Khimiya rastitel'nogo syr'ya, 2013, no. 1, pp. 29–37. (in Russ.).
Momzyakova K.S., Deberdeyev T.R., Valishina Z.T. i dr. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2019, vol. 22, no. 6, pp. 75–78. (in Russ.).
Aleshina L.A., Glazkova S.V., Lugovskaya L.A. i dr. Khimiya rastitel'nogo syr'ya, 2001, no. 1, pp. 5–36. DOI: 10.14258/jcprm.1301029. (in Russ.).
Grunin Yu.B., Grunin L.Yu., Nikol'skaya Ye.A. i dr. Butlerovskiye soobshcheniya, 2010, vol. 20, no. 6, pp. 35–51. (in Russ.).
Aleshina L.A., Gurtova V.A., Melekh N.V. Struktura i fiziko-khimicheskiye svoystva tsellyuloz i nanokompozitov na ikh osnove. [Structure and physicochemical properties of celluloses and nanocomposites based on them]. Petrozavodsk, 2014, 244 p. (in Russ.).
Aabloo A., French A.D., Mikelsaar R.H., Pertsin A.J. Cellulose, 1994, vol. 1, pp. 161–168.
Nishiyama Y. J. Wood Sci., 2009, vol. 55, no. 4, pp. 241–249. DOI: 10.1007/s10086-009-1029-1.
Aldaeus F., Larsson K., Stevanic-Srndovic J. et al. Cellulose, 2015, vol. 22, no. 6, pp. 3991–4002.
Sebe G., Ham-Pichavant F. Ibarboure E. et al. Biomacromolecules, 2012, vol. 13, no. 2, pp. 570–578. DOI: 10.1021/bm201777j.
Li Q., Renneckar S. Biomacromolecules, 2011, vol. 12, no. 3, pp. 650–659. DOI: 10.1021/bm101315y.
Aleshina L.A., Lugovskaya L.A., Filatov A.S. i dr. Elektronnyy zhurnal «Issledovano v Rossii», 2002, no. 203, pp. 2237–2243. (in Russ.).
Nelson M.L., O’Connor R.T. Journal of Applied Polymer Science, 1964, vol. 8, no. 3, pp. 1311–1324.
Aleshina L.A., Lyukhanova I.V., Budayeva V.V. i dr. Uchenyye zapiski Petrozavodskogo gosud. un-ta, 2011, no. 8, pp. 114–117. (in Russ.).
Bergmann J., Kleeberg R., Haase A. et al. Mat. Sci. Forum, 2000, vol. 347–349, pp. 303–308.
Järvinen M. J. Appl. Cryst., 1993, vol. 26, pp. 525–531.
Dzhons D.V. Tsellyuloza i yeye proizvodnyye. [Cellulose and its derivatives]. Moscow, 1974, pp. 119–154. (in Russ.).
Segal L., Creely J.J., Martin A.E. et al. Textile research journal, 1959, vol. 29, pp. 786–794. DOI: 10.1177/004051755902901003.
Momzyakova K.S., Deberdeev T.R., Valishina Z.T. et al. Materials Science Forum, 2019, vol. 992, pp. 791–795.
Momzyakova K.S., Deberdeyev T.R., Valishina Z.T. i dr. Khimicheskaya promyshlennost', 2019, no. 6, pp. 22–26. (in Russ.).
Podgorbunskikh Ye.M. Issledovaniye mekhanofermentativnykh prevrashcheniy polimerov trudnopererabatyvaye-mogo rastitel'nogo syr'ya: avtoref. diss. … kand. khim. nauk. [Investigation of mechanoenzymatic transformations of polymers of difficult-to-process plant raw materials: abstract of thesis. ... Cand. chem. sciences]. Novosibirsk, 2018, 24 p. (in Russ.).
Baryshnikova S.V., Sharypova V.I., Zhizhayeva A.M i dr. Zhurnal Sibirskogo federal'nogo universiteta, 2010, vol. 3, no. 2, pp. 120–127. (in Russ.).
Fayzullayev B.Kh., Akbarov Kh.I., Fayzullayev B.Kh. Problemy nauki, 2017, vol. 9, no. 22, pp. 8–12. (in Russ.).
Ioyelovich M.Ya. Vysokomolekulyarnyye soyedineniya, 2016, vol. 58, no. 6, pp. 604–624. (in Russ.).
Grigor'yeva N.P., Galimullin I.N., Nugmanov O.K. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2014, vol. 17, no. 23, pp. 362–367. (in Russ.).
Grebenkin A.N. Vzaimosvyaz' struktury, svoystv i tekhnologii dispergirovaniya lubovoloknistogo syr'ya v ul'trazvukovykh i gidrodinamichskikh polyakh: diss. … d-ra tekhn. nauk. [The relationship of structure, properties and technology of dispersion of bast fiber raw materials in ultrasonic and hydrodynamic fields: dis. ... Dr. Tech. sciences]. St.-Petersburg, 2003. (in Russ.).
Copyright (c) 2021 chemistry of plant raw material
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.