INFLUENCE OF TEMPERATURE CONDITIONS ON THE ACCUMULATION OF PRIMARY AND SECONDARY METABOLITES BY LICHENS FLAVOCETRARIA CUCULLATA AND CETRARIA LAEVIGATA

UDC 577.121:582.29

  • Il'ya Andreyevich Prokopiev Institute for Biological Problems of Cryolithozone SB RAS Email: ilya.a.prokopiev@gmail.com
  • Igor Vitalievich Sleptsov Institute for Biological Problems of Cryolithozone SB RAS Email: Neroxasg@mail.ru
  • Lena Nikolayevna Poryadina Institute for Biological Problems of Cryolithozone SB RAS Email: poryadina-lena@rambler.ru
Keywords: lichens, temperature, gas chromatography-mass spectrometry, high performance liquid chromatography, cryoprotectors, osmoprotectors

Abstract

The study of the effect of temperature on the accumulation of primary and secondary metabolites by lichens Flavocetraria cucullata (Bellardi) Kärnefelt & Thell and Cetraria laevigata Rass was carried out. Lichen samples were taken out from under the snow (-20 °C) together with the soil substrate and transferred to the climatic chamber. Then the temperature in the climatic chamber was sequentially increased to +10 and +20 °C. The lichen exposure was carried out for 30 days for each temperature regime. The analysis of primary metabolites was performed by gas chromatography-mass spectrometry. It was shown that in lichens F. cucullata and C. laevigata at temperatures of +10 and +20 °C, an increase in the content of mannitol, ribitol, sucrose, and hydroxyproline was observed, as well as a decrease in the content of unsaturated fatty acids as compared to the initial samples. At the same time, the content of glycerol and arabitol in the thalli of the initial lichens (-20 °C) was higher than after exposure at +10 and +20 °C, which, apparently, is associated with the cryoprotective properties of these compounds. The content of secondary metabolites in lichens was determined by high performance liquid chromatography. It was shown that the content of usnic, allo-protolichesterinic, and protolichesterinic acids in F. cucullata increased after exposure in a climatic chamber, which may be associated with a general activation of metabolic processes with an increase in temperature. At the same time, the content of fumarprotocetraric acid in C. laevigata lichens decreased at temperatures of +10 and +20 °C compared to the initial samples, which may be associated with its protective properties under the action of low-temperature stress.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Il'ya Andreyevich Prokopiev, Institute for Biological Problems of Cryolithozone SB RAS

кандидат биологических наук, ведущий научный сотрудник

Igor Vitalievich Sleptsov, Institute for Biological Problems of Cryolithozone SB RAS

кандидат биологических наук, научный сотрудник

Lena Nikolayevna Poryadina, Institute for Biological Problems of Cryolithozone SB RAS

кандидат биологических наук, старший научный сотрудник

References

Poryadina L.N., Prokop'yev I.A., Konoreva L.A., Chesnokov S.V., Sleptsov I.V., Filippova G.V., Shashurin M.M. Prirodnyye resursy Arktiki i Subarktiki, 2018, no. 4 (26), pp. 109–117. DOI: 10.31242/2618-9712-2018-26-4-109-117. (in Russ.).

Harańczyk H., Casanova-Katny A., Olech M., Strzałka K. Plant Adaptation Strategies in Changing Environment. Sin-gapore, 2017, pp. 77–102. DOI: 10.1007/978-981-10-6744-0_3.

Bhattacharya S. Cryopreservation Biotechnology in Biomedical and Biological Sciences. IntechOpen, 2018, pp. 8–19. DOI: 10.5772/intechopen.80477.

Selivanova Ye.A. Byulleten' Orenburgskogo nauchnogo tsentra UrO RAN, 2012, no. 3, pp. 1–11. (in Russ.).

Prokop'yev I.A., Sleptsov I.V., Poryadina L.N., Rozhina S.M. Khimiya rastitel'nogo syr'ya, 2020, no. 4, pp. 211–217. DOI: 10.14258/jcprm.2020047443. (in Russ.).

Prokop'yev I.A., Sleptsov I.V., Poryadina L.N., Rozhina S.M. Prirodnyye resursy Arktiki i Subarktiki, 2020, vol. 25, no. 1, pp. 94–100. (in Russ.).

Shen B., Hohmann S., Jensen R.G., Bohnert H.J. Plant Physiol., 1999, vol. 121(1), pp. 45–52. DOI: 10.1104/pp.121.1.45.

Baruch E., Belostotskii A.M., Mastai Y. Journal of Molecular Structure, 2008, vol. 874, pp. 170–177. DOI: 10.1016/j.molstruc.2007.03.054.

Tibbett M., Sanders F.E., Cairney J.W.G. Mycorrhiza, 2002, vol. 12, pp. 249–255. DOI: 10.1007/s00572-002-0183-8.

Los' D.A. Vestnik RAN, 2005, vol. 75, no. 4, pp. 338–345. (in Russ.).

Niu Y., Xiang Y. Front. Plant Sci., 2018, vol. 9, 915. DOI: 10.3389/fpls.2018.00915.

Tan L., Zhuo R., Li S., Ma F., Zhang X. J. Sci. Food Agric., 2017, vol. 97, pp. 1876–1884. DOI: 10.1002/jsfa.7990.

Chalker-Scott L. Photochemistry and Photobiology, 1999, vol. 70, no. 1, pp. 1–9. DOI: 10.1111/j.1751-1097.1999.tb01944.x.

Hoshino T., Odaira M., Yoshida M., Tsuda S. Journal of Plant Research, 1999, vol. 112, pp. 255–261. DOI: 10.1007/PL00013875.

Prokopev I.A., Filippova G.V. Chemistry of Natural Compounds, 2019, vol. 55(5), pp. 945–947. DOI: 10.1007/s10600-019-02855-9.

Kosanić M., Ranković B., Stanojković T., Rančić A., Manojlović N. LWT Food Sci. Technol., 2014, vol. 59, pp. 518–525. DOI: 10.1016/j.lwt.2014.04.047.

Wingsle G., Karpinski S., Hallgren J.-E. Phyton, 1999, vol. 4, pp. 253–268.

Rice-Evans C.A., Miller N.J., Paganga G. Trends in Plant Science, 1997, vol. 2, pp. 152–159. DOI: 10.1016/S1360-1385(97)01018-2.

Brisdelli F., Perilli M., Sellitri D., Piovano M., Garbarino J.A., Nicoletti M., Bozzi A., Amicosante G., Celenza G. Phytotherapy Research, 2013, vol. 27(3), pp. 431–437. DOI: 10.1002/ptr.4739.

Sisodia R., Geol M., Verma S., Rani A., Dureja P. Nat. Prod. Res., 2013, vol. 27, pp. 2235–2239. DOI: 10.1080/14786419.2013.811410.

Published
2021-09-27
How to Cite
1. Prokopiev I. A., Sleptsov I. V., Poryadina L. N. INFLUENCE OF TEMPERATURE CONDITIONS ON THE ACCUMULATION OF PRIMARY AND SECONDARY METABOLITES BY LICHENS FLAVOCETRARIA CUCULLATA AND CETRARIA LAEVIGATA // chemistry of plant raw material, 2021. № 3. P. 227-233. URL: http://journal.asu.ru/cw/article/view/9170.
Section
Low-molecular weight compounds