PHYTHORMONES AND ABIOTIC STRESS (REVIEW)

UDC 581.1;634.8;633.11

  • Lyudmila Vasilievna Chumikina Institute of Biochemistry. A.N. Bach, Federal Research Center "Fundamentals of Biotechnology" RAS https://orcid.org/0000-0001-8414-5212 Email: chumikina@mail.ru
  • Lidiya Ivanovna Arabova Institute of Biochemistry. A.N. Bach, Federal Research Center "Fundamentals of Biotechnology" RAS https://orcid.org/0000-0002-1429-6610 Email: l.arabova@gmail.com
  • Valentina Vasil'yevna Kolpakova All-Russian Research Institute of Starch Products - branch of the Federal State Budgetary Scientific Institution "Federal Research Center of Food Systems named after V.M. Gorbatov" https://orcid.org/0000-0002-7288-8569 Email: Val-kolpakova@rambler.ru
  • Aleksey Fedorovich Topunov Institute of Biochemistry. A.N. Bach, Federal Research Center "Fundamentals of Biotechnology" RAS https://orcid.org/0000-0002-6625-7373 Email: aftopunov@yandex.ru
Keywords: phytohormones, abscisic acid, auxins, cytokinins, gibberellins, abiotic stress

Abstract

Plants experience a variety of biotic and abiotic stresses that cause crop losses worldwide. Preventing crop losses due to these factors is of particular importance. For this, it is important to understand the mechanisms of both suppressing and stimulating seed germination and to develop technologies for controlling seed dormancy and development in order to avoid unwanted germination in the ears. Gene switching technologies can be used to address this and similar problems in seed development. Recent studies have shown that classical phytohormones - auxins, cytokinins, abscisic acid, ethylene, gibberellins - control all stages of plant ontogenesis. In addition to the classic phytohormones, there are relatively new ones - brassinosteroids, jasmonates, strigolactones, salicylates, which deserve consideration in a separate review. Together, these compounds are important metabolic engineering targets for the production of stress-resistant crops. In this review, we have summarized the role of phytohormones in plant development and resistance to abiotic stresses. Experimental data were presented on the transport of phytohormones, the interaction between them, as a result of which the activity of a certain hormone can be either enhanced or suppressed. We have identified the main links of phytohormones with an emphasis on the response of plants to abiotic stresses and have shown that the effect of an individual hormone depends on the ratio with other phytohormones and metabolites. Additional research along these lines will help explain different stress responses and provide tools to improve plant stress tolerance.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Lyudmila Vasilievna Chumikina, Institute of Biochemistry. A.N. Bach, Federal Research Center "Fundamentals of Biotechnology" RAS

кандидат биологических наук, старший научный сотрудник

Lidiya Ivanovna Arabova, Institute of Biochemistry. A.N. Bach, Federal Research Center "Fundamentals of Biotechnology" RAS

кандидат биологических наук, научный сотрудник

Valentina Vasil'yevna Kolpakova, All-Russian Research Institute of Starch Products - branch of the Federal State Budgetary Scientific Institution "Federal Research Center of Food Systems named after V.M. Gorbatov"

доктор технических наук, профессор, заведующая отделом

Aleksey Fedorovich Topunov, Institute of Biochemistry. A.N. Bach, Federal Research Center "Fundamentals of Biotechnology" RAS

доктор биологических наук, профессор, заведующий лабораторией

References

Wani S.H., Kumar V., Shriram V., Sah S.K. The Crop Journal, 2016, vol. 4(3), pp. 162–176. DOI: 10.1016/j.cj.2016.01.010.

Bewley J.D., Black M. Seeds: physiology of development and germination. New York: Plenum Press, 1994, 445 p. DOI: 10.1007/978-1-4899-1002-8.

Finch-Savage W.E., Leubner-Metzger G. New Phytologist, 2006, vol. 171(3), pp. 501–523. DOI: 10.1111/j.1469-8137.2006.01787.x.

Gao F., Ayele B.T. Front. Plant Sci., 2014, vol. 5, article 458. DOI: 10.3389/fpls.2014.00458.

Nambara E., Okamoto M., Tatematsu K., Yano R., Seo M., Kamiya Y. Seed Sci. Res., 2010, vol. 20(2), pp. 55–67. DOI: 10.1017/S0960258510000012.

Lefebvre V., North H., Frey A., Sotta B., Seo M., Okamoto M., Nambara E., Marion Poll A. The Plant Journal, 2006, vol. 45(3), pp. 309–319. DOI: 10.1111/j.1365-313X.2005.02622.x.

Kang J., Hwang J.-U., Lee M., Kim Y.-Y., Assmann S.M., Martinoia E., Lee Y. Proc. Nat. Acad. Sci. USA, 2010, vol. 107(5), pp. 2355–2360. DOI: 10.1073/pnas.0909222107.

Kanno Y., Hanada A., Chiba Y., Ichikawa T., Nakazawa M., Matsui M., Koshiba T., Kamiya Y., Seo M. Proceedings of the National Academy of Sciences, 2012, vol. 109(24), pp. 9653–9658. DOI: 10.1073/pnas.120356710.

Chan Z. Genomics, 2012, vol. 100, pp. 110–115. DOI: 10.1016/j.ygeno.2012.06.004.

Ruiz-Sola M.Á., Rodríguez-Concepción M. The Arabidopsis Book, 2012, vol. 10, e0158. DOI: 10.1199/tab.0158.

Gumilevskaya N.A., Skazhenik M.A., Chumikina L.V., Akhmatova A.T., Kretovich V.L. Prikladnaya biokhimiya i mikrobiologiya, 1984, vol. 20, no. 1, pp. 9–23. (in Russ.).

Gumilevskaya N.A., Akhmatova A.T., Chumikina L.V., Kretovich V.L. Biokhimiya, 1985, vol. 50, no. 7, pp. 1189–1200. (in Russ.).

Gumilevskaya N.A., Chumikina L.V., Arabova L.I., Zimin M.V., Shatilov V.R. Fiziologiya rasteniy, 1996, vol. 43, no. 2, pp. 247–255. (in Russ.).

Rajjou L., Gallardo K., Debeaujon I., Vandekerckhove J., Job C., Job D. Plant Physiol., 2004, vol. 134(4), pp. 1598–1613. DOI: 10.1104/pp.103.036293.

Cadman C.S.C., Toorop P.E., Hilhorst H.W.M., Finch-Savage W.E. The Plant Journal, 2006, vol. 46(5), pp. 805–822. DOI: 10.1111/j.1365-313X.2006.02738.x.

Finch-Savage W.E., Cadman C.S.C., Toorop P.E., Lynn J.R., Hilhorst H.W.M. Plant J., 2007, vol. 51(1), pp. 60–78. DOI: 10.1111/j.1365-313X.2007.03118.x.

Destefano-Beltrán L., Knauber D., Huckle L., Suttle J.C. Plant Mol. Biol., 2006, vol. 61(4–5), pp. 687–697. DOI: 10.1007/s11103-006-0042-7.

Chernys J.T., Zeevaart J.A. Plant Physiol., 2000, vol. 124(1), pp. 343–353. DOI: 10.1104/pp.124.1.343.

Rodrigo M.-J., Alquezar B., Zacarías L. J. Exp. Bot., 2006, vol. 57(3), pp. 633–643. DOI: 10.1093/jxb/erj048.

Martínez-Andújar C., Ordiz M.I., Huang Z., Nonogaki M., Beachy R.N., Nonogaki H. Proc. Nat. Acad. Sci. USA, 2011, vol. 108(41), pp. 17225–17229. DOI: 10.1073/pnas.1112151108.

Qin X., Zeevaart J.A.D. Plant Physiol., 2002, vol. 128(2), pp. 544–551. DOI: 10.1104/pp.010663.

Kushiro T., Okamoto M., Nakabayashi K., Yamagishi K., Kitamura S., Asami T., Hirai N., Koshiba T., Kamiya Y., Nambara E. EMBO J., 2004, vol. 23(7), pp. 1647–1656. DOI: 10.1038/sj.emboj.7600121.

Thompson A.J., Jackson A.C., Symonds R.C., Mulholland B.J., Dadswell A.R., Blake P.S., Burbidge A., Taylor I.B. Plant J., 2000, vol. 23(3), pp. 363–374. DOI: 10.1046/j.1365-313x.2000.00789.x.

Fan J., Hill L., Crooks C., Doerner P., Lamb C. Plant Physiol., 2009, vol. 150(4), pp. 1750–1761. DOI: 10.1104/pp.109.137943.

Gerjets T., Scholefield D., Foulkes M.J., Lenton J.R., Holdsworth M.J. J. Exp. Bot., 2010, vol. 61(2), pp. 597–607. DOI: 10.1093/jxb/erp329.

Sponsel V.M., Hedden P. Plant Hormones Biosynthesis, Signal Transduction, Action! Dordrecht: Springer, 2004, pp. 63–94.

Yamaguchi S. Annu. Rev. Plant Biol., 2008, vol. 59(1), pp. 225–251. DOI: 10.1146/annurev.arplant.59.032607.092804.

Hedden P., Thomas S.G. Biochem. J., 2012, vol. 444(1), pp. 11–25. DOI: 10.1042/BJ20120245.

Colebrook E.H., Thomas S.G., Phillips A.L., Hedden P. J. Exp. Biol., 2014, vol. 217, pp. 67–75. DOI: 10.1242/jeb.089938.

Munteanu V., Gordeev V., Martea R., Duca M. International Journal of Advanced Research in Biological Sciences, 2014, vol. 1(6), pp. 136–153.

Yabuta T., Sumiki Y. J. Agric. Chem. Soc. Jpn. 1938, vol. 14, p. 1526.

Silverstone A.L., Chang C., Krol E., Sun T.P. Plant J., 1997, vol. 12(1), pp. 9–19. DOI: 10.1046/j.1365-313x.1997.12010009.x.

Aach H., Bode H., Robinson D.G., Graebe J.E. Planta, 1997, vol. 202, pp. 211–219.

Kaneko M., Itoh H., Inukai Y., Sakamoto T., Ueguchi-Tanaka M., Ashikari M., Matsuoka M. Plant J., 2003, vol. 35(1), pp. 104–115. DOI: 10.1046/j.1365-313x.2003.01780.x.

Yamaguchi S., Kamiya Y., Sun T. Plant J., 2001, vol. 28(4), pp. 443–453. DOI: 10.1046/j.1365-313X.2001.01168.x.

Yamaguchi S., Kamiya Y. Plant Cell. Physiol., 2000, vol. 41, pp. 251–257. DOI: 10.1093/pcp/41.3.251.

Vishal B., Kumar P.P. Front. Plant Sci., 2018, vol. 9, article 838. DOI: 10.3389/fpls.2018.00838.

Stamm P., Ravindran P., Mohanty B., Tan E.L., Yu H., Kumar P.P. BMC Plant Biol., 2012, vol. 12, p. 179. DOI: 10.1186/1471-2229-12-179.

Davière J.-M., Achard P. Development, 2013, vol. 140(6), pp. 1147–1151. DOI: 10.1242/dev.087650.

Fleet C.M., Sun T. Curr. Opin. Plant Biol., 2005, vol. 8(1), pp. 77–85. DOI: 10.1016/j.pbi.2004.11.015.

Hamayun M., Hussain A., Khan S.A., Kim H.Y., Khan A.L., Waqas M., Irshad M., Iqbal A., Rehman G., Jan S., Lee I-J. Front. Microbiol., 2017, vol. 8, article 686. DOI: 10.3389/fmicb.2017.00686.

Urano K., Maruyama K., Jikumaru Y., Kamiya Y., Yamaguchi-Shinozaki K., Shinozaki K. Plant J., 2017, vol. 90, pp. 17–36. DOI: 10.1111/tpj.13460.

Wang B., Wei H., Xue Z., Zhang W.H. Ann. Bot., 2017, vol. 119, pp. 945–956. DOI: 10.1093/aob/mcw250.

Shu K., Zhang H., Wang S., Chen M., Wu Y., Tang S., Liu C., Feng Y., Cao X., Xie Q. PLoS Genet., 2013, vol. 9(6), e1003577. DOI: 10.1371/journal.pgen.1003577.

Shu K., Chen Q., Wu Y., Liu R., Zhang H., Wang P., Li Y., Wang S., Tang S., Liu C., Yang W., Cao X., Serino G., Xie Q. Plant J., 2016, vol. 85(3), pp. 348–361. DOI: 10.1111/tpj.13109.

Shu K., Zhou W., Yang W. New Phytol., 2018, vol. 217(3), pp. 977–983. DOI: 10.1111/nph.14880.

Huang X., Zhang X., Gong Z., Yang S., Shi Y. Plant J., 2017, vol. 89(2), pp. 354–365. DOI: 10.1111/tpj.13389.

Cantoro R., Crocco C.D., Benech-Arnold R.L., Rodríguez M.V. Journal of Experimental Botany, 2013, vol. 64(18), pp. 5721–5735. DOI: 10.1093/jxb/ert347.

Liu J., Moore S., Chen C., Lindsey K. Molecular Plant, 2017, vol. 10(12), pp. 1480–1496. DOI: 10.1016/j.molp.2017.11.002.

Du Y., Scheres B. Journal of Experimental Botany, 2018, vol. 69(2), pp. 155–167. DOI: 10.1093/jxb/erx223.

Zhang H., Han W., De Smet I., Talboys P., Loya R., Hassan A., Rong H., Jürgens G., Paul Knox J., Wang M.-H. The Plant Journal, 2010, vol. 64(5), pp. 764–774. DOI: 10.1111/j.1365-313X.2010.04367.x.

Luo X., Chen Z., Gao J., Gong Z. Plant J., 2014, vol. 79(1), pp. 44–55. DOI: 10.1111/tpj.12534.

Mockaitis K., Estelle M. Annu. Rev. Cell Dev. Biol., 2008, vol. 24(1), pp. 55–80. DOI: 10.1146/annurev.cellbio.23.090506.123214.

Zhao Y. Annu. Rev. Plant Biol., 2010, vol. 61(2), pp. 49–64. DOI: 10.1146/annurev-arplant-042809-112308.

Tromas A., Perrot-Rechenmann C. Comptes Rendus Biologies, 2010, vol. 333(4), pp. 297–306. DOI: 10.1016/j.crvi.2010.01.005.

Hentrich M., Böttcher C., Düchting P., Cheng Y., Zhao Y., Berkowitz O., Masle J., Medina J., Pollmann S. Plant J., 2013, vol. 74, pp. 626–637. DOI: 10.1111/tpj.12152.

Chapman E.J., Estelle M. Annu. Rev. Genet., 2009, vol. 43(1), pp. 265–285. DOI: 10.1146/annurev-genet-102108-134148.

Ludwig-Müller J. Journal of Experimental Botany, 2011, vol. 62(6), pp. 1757–1773. DOI: 10.1093/jxb/erq412.

Ljung K., Hull A.K., Celenza J., Yamada M., Estelle M., Normanly J., Sandberg G. Plant Cell., 2005, vol. 17(4), pp. 1090–1104. DOI: 10.1105/tpc.104.029272.

Wright A.D., Sampson M.B., Neuffer M.G., Michalczuk L., Slovin J.P., Cohen J.D. Science, 1991, vol. 254(5034), pp. 998–1000. DOI: 10.1126/science.254.5034.998.

Normanly J., Cohen J.D., Fink G.R. Proceedings of the National Academy of Sciences, 1993, vol. 90(21), pp. 10355–10359. DOI: 10.1073/pnas.90.21.10355.

Jain M., Khurana J.P. FEBS Journal, 2009, vol. 276(11), pp. 3148–3162. DOI: 10.1111/j.1742-4658.2009.07033.x.

Song Y., Wang L., Xiong L. Planta, 2009, vol. 229(3), pp. 577–591. DOI: 10.1007/s00425-008-0853-7.

Seidel C., Walz A., Park S., Cohen J.D., Ludwig-Müller J. Plant Biology, 2006, vol. 8(3), pp. 340–345. DOI: 10.1055/s-2006-923802.

Normanly J. Cold Spring Harbor Perspectives in Biology, 2010, vol. 2(1), a001594. DOI: 10.1101/cshperspect.a001594.

Bialek K., Michalczuk L., Cohen J.D. Plant Physiology, 1992, vol. 100, pp. 509–517. DOI: 10.1104/pp.100.1.509.

Wu C., Cui K., Wang W., Li Q., Fahad S., Hu Q., Huang J., Nie L., Peng S. Scientific Reports, 2016, vol. 6, p. 34978. DOI: 10.1038/srep34978.

Bartel B., LeClere S., Magidin M., Zolman B.K. Journal of Plant Growth Regulation, 2001, vol. 20(3), pp. 198–216. DOI: 10.1007/s003440010025.

Hagen G., Guilfoyle T. Plant Mol. Biol., 2002, vol. 49(3–4), pp. 373–385. DOI: 10.1023/A:1015207114117.

Woodward A.W., Bartel B. Annals of Botany, 2005, vol. 95(5), pp. 707–735. DOI: 10.1093/aob/mci083.

Shibasaki K., Uemura M., Tsurumi S., Rahman A. Plant Cell., 2009, vol. 21(12), pp. 3823–3838. DOI: 10.1105/tpc.109.069906.

Du H., Liu H., Xiong L. Front. Plant Sci., 2013, vol. 4, article 397. DOI: 10.3389/fpls.2013.00397.

Kermode A.R. J. Plant Growth Regul., 2005, vol. 24(4), pp. 319–344. DOI: 10.1007/s00344-005-0110-2.

Lorrai R., Boccaccini A., Ruta V., Possenti M., Costantino P., Paola V. AoB PLANTS, 2018, vol. 10(5), ply061. DOI: 10.1093/aobpla/ply061.

Liu X., Zhang H., Zhao Y., Feng Z., Li Q., Yang H.-Q., Luan S., Li J., He Z.-H. Proceedings of the National Academy of Sciences, 2013, vol. 110(38), pp. 15485–15490. DOI: 10.1073/pnas.1304651110.

Cheng Y., Dai X., Zhao Y. Genes Dev., 2006, vol. 20(13), pp. 1790–1799. DOI: 10.1101/gad.1415106.

Thole J.M., Beisner E.R., Liu J., Venkova S.V., Strader L.C. G3: Genes, Genomes, Genetics, 2014, vol. 4(7), pp. 1259–1274. DOI: 10.1534/g3.114.011080.

Strader L.C., Monroe-Augustus M., Bartel B. BMC Plant Biol., 2008, vol. 8(1), p. 41. DOI: 10.1186/1471-2229-8-41.

Wang L., Hua D., He J., Duan Y., Chen Z., Hong X., Gong Z. PLoS Genet., 2011, vol. 7(7), e1002172. DOI: 10.1371/journal.pgen.1002172.

Schaller G.E., Street I.H., Kieber J.J. Current Opinion in Plant Biology, 2014, vol. 21, pp. 7–15. DOI: 10.1016/j.pbi.2014.05.015.

Zhao Z., Andersen S.U., Ljung K., Dolezal K., Miotk A., Schultheiss S.J., Lohmann J.U. Nature, 2010, vol. 465(7301), pp. 1089–1092. DOI: 10.1038/nature09126.

Su Y.-H., Liu Y.-B., Zhang X.-S. Molecular Plant, 2011, vol. 4(4), pp. 616–625. DOI: 10.1093/mp/ssr007.

Zhang W., Swarup R., Bennett M., Schaller G.E., Kieber J.J. Current Biology, 2013, vol. 23(20), pp. 1979–1989. DOI: 10.1016/j.cub.2013.08.008.

Bielach A., Podlešáková K., Marhavý P., Duclercq J., Cuesta C., Müller B., Grunewald W., Tarkowski P., Benková E. Plant Cell., 2012, vol. 24(10), pp. 3967–3981. DOI: 10.1105/tpc.112.103044.

Zwack P.J., Robinson B.R., Risley M.G., Rashotte A.M. Plant and Cell Physiology, 2013, vol. 54(6), pp. 971–981. DOI: 10.1093/pcp/pct049.

Zwack P.J., Rashotte A.M. J. Exp. Bot., 2015, vol. 66(16), pp. 4863–4871. DOI: 10.1093/jxb/erv172.

Mok D.W., Mok M.C. Annu. Rev. Plant. Physiol. Plant. Mol. Biol., 2001, vol. 52(1), pp. 89–118. DOI: 10.1146/annurev.arplant.52.1.89.

Sakakibara H. Annu. Rev. Plant Biol., 2006, vol. 57(1), pp. 431–449. DOI: 10.1146/annurev.arplant.57.032905.105231.

Cutler S.R., Rodriguez P.L., Finkelstein R.R., Abrams S.R. Annu. Rev. Plant Biol., 2010, vol. 61(1), pp. 651–679. DOI: 10.1146/annurev-arplant-042809-112122.

Danquah A., de Zelicourt A., Colcombet J., Hirt H. Biotechnology Advances, 2014, vol. 32(1), pp. 40–52. DOI: 10.1016/j.biotechadv.2013.09.006.

Wang F., Cui X., Sun Y., Dong C.-H. Plant Cell Rep., 2013, vol. 32(7), pp. 1099–1109. DOI: 10.1007/s00299-013-1421-6.

Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoele K., Gollery M., Shulaev V., Van Breusegem F. Trends in Plant Science, 2011, vol. 16(6), pp. 300–309. DOI: 10.1016/j.tplants.2011.03.007.

Tognetti V.B., Mühlenbock P., Van Breusegem F. Plant, Cell & Environment, 2012, vol. 35(2), pp. 321–333. DOI: 10.1111/j.1365-3040.2011.02324.x.

Bychkov I.A., Kudryakova N.V., Kuznetsov V.V. Mekhanizmy ustoychivosti rasteniy i mikroorganizmov k neblagopriyatnym usloviyam sredy. [Mechanisms of resistance of plants and microorganisms to unfavorable environ-mental conditions]. Irkutsk, 2018, pp. 170–174. DOI: 10.31255/978-5-94797-319-8-170-174. (in Russ.).

Verma V., Ravindran P., Kumar P.P. BMC Plant Biol., 2016, vol. 16, article 86. DOI: 10.1186/s12870-016-0771-y.

Xu Y., Burgess P., Zhang X., Huang B. J. Exp. Bot., 2016, vol. 67(6), pp. 1979–1992. DOI: 10.1093/jxb/erw019.

Chang Z., Liu Y., Dong H., Teng K., Han L., Zhang X. PLoS ONE, 2016, vol. 11(4), e0154005. DOI: 10.1371/journal.pone.0154005.

Kudoyarova G.R., Vysotskaya L.B., Cherkozyanova A., Dodd I.C. Journal of Experimental Botany, 2006, vol. 58(2), pp. 161–168. DOI: 10.1093/jxb/erl116.

Ghanem M.E., Albacete A., Martinez-Andujar C., Acosta M., Romero-Aranda R., Dodd I.C., Lutts S., Perez-Alfocea F. Journal of Experimental Botany, 2008, vol. 59(11), pp. 3039–3050. DOI: 10.1093/jxb/ern153.

Pospisilova J., Batkova P. Biologia plant, 2004, vol. 48(3), pp. 395–399. DOI: 10.1023/B:BIOP.0000041092.40705.6b.

Alvarez S., Marsh E.L., Schroeder S.G., Schachtman D.P. Plant Cell Environ, 2008, vol. 31(3), pp. 325–340. DOI: 10.1111/j.1365-3040.2007.01770.x.

Bano A., Hansen H., Dörffling K., Hahn H. Phytochemistry, 1994, vol. 37 (2), pp. 345–347. DOI: 10.1016/0031-9422(94)85058-5.

Hare P.D., Cress W.A., van Staden J. Plant Growth Regulation, 1997, vol. 23(1/2), pp. 79–103. DOI: 10.1023/A:1005954525087.

Pospíšilová H., Jiskrová E., Vojta P., Mrízová K., Kokáš F., Čudejková M.M., Bergougnoux V., Plíhal O., Klimešová J., Novák O., Dzurová L., Frébort I., Galuszka P. New Biotechnology, 2016, vol. 33(5), pp. 692–705. DOI: 10.1016/j.nbt.2015.12.005.

Vojta P., Kokáš F., Husičková A., Grúz J., Bergougnoux V., Marchetti C.F., Jiskrová E., Ježilová E., Mik V., Ikeda Y., Galuszka P. New Biotechnology, 2016, vol. 33(5), pp. 676–691. DOI: 10.1016/j.nbt.2016.01.010.

Nishiyama R., Watanabe Y., Fujita Y., Le D.T., Kojima M., Werner T., Vankova R., Yamaguchi-Shinozaki K., Shino-zaki K., Kakimoto T., Sakakibara H., Schmülling T., Tran L.-S.P. Plant Cell., 2011, vol. 23(6), pp. 2169–2183. DOI: 10.1105/tpc.111.087395.

Werner T., Motyka V., Laucou V., Smets R., Van Onckelen H., Schmülling T. Plant Cell., 2003, vol. 15(11), pp. 2532–2550. DOI: 10.1105/tpc.014928.

Maruyama K., Urano K., Yoshiwara K., Morishita Y., Sakurai N., Suzuki H., Kojima M., Sakakibara H., Shibata D., Saito K., Shinozaki K., Yamaguchi-Shinozaki K. Plant Physiol., 2014, vol. 164(4), pp. 1759–1771. DOI: 10.1104/pp.113.231720.

Tripathi A.K., Pareek A., Sopory S.K., Singla-Pareek S.L. Rice, 2012, vol. 5, article 37. DOI: 10.1186/1939-8433-5-37.

Aval'bayev A.M., Somov K.A., Yuldashev R.A., Shakirova F.M. Biokhimiya, 2012, vol. 77, no. 12, pp. 1621–1630. (in Russ.).

Rivero R.M., Kojima M., Gepstein A., Sakakibara H., Mittler R., Gepstein S., Blumwald E. Proceedings of the Na-tional Academy of Sciences, 2007, vol. 104(49), pp. 19631–19636. DOI: 10.1073/pnas.0709453104.

Peleg Z., Reguera M., Tumimbang E., Walia H., Blumwald E. Plant Biotechnology Journal, 2011, vol. 9(7), pp. 747–758. DOI: 10.1111/j.1467-7652.2010.00584.x.

Qin H., Gu Q., Zhang J., Sun L., Kuppu S., Zhang Y., Burow M., Payton P., Blumwald E., Zhang H. Plant and Cell Physiology, 2011, vol. 52(11), pp. 1904–1914. DOI: 10.1093/pcp/pcr125.

Nishiyama R., Watanabe Y., Leyva-Gonzalez M.A., Van Ha C., Fujita Y., Tanaka M., Seki M., Yamaguchi-Shinozaki K., Shinozaki K., Herrera-Estrella L., Tran L.-S.P. Proceedings of the National Academy of Sciences, 2013, vol. 110(12), pp. 4840–4845. DOI: 10.1073/pnas.1302265110.

Macková H., Hronková M., Dobrá J., Turečková V., Novák O., Lubovská Z., Motyka V., Haisel D., Hájek T., Prášil I.T., Gaudinová A., Štorchová H., Ge E., Werner T., Schmülling T., Vanková R. Journal of Experimental Bota-ny, 2013, vol. 64(10), pp. 2805–2815. DOI: 10.1093/jxb/ert131.

Vishwakarma K., Upadhyay N., Kumar N., Yadav G., Singh J., Mishra R.K., Kumar V., Verma R., Upadhyay R.G., Pandey M., Sharma S. Front. Plant Sci., 2017, vol. 8, article 161. DOI: 10.3389/fpls.2017.00161.

Liao X., Guo X., Wang Q., Wang Y., Zhao D., Yao L., Wang S., Liu G., Li T. Plant J., 2017, vol. 89(3), pp. 510–526. DOI: 10.1111/tpj.13401.

Li W., Herrera-Estrella L., Tran L.-S.P. Trends in Plant Science, 2019, vol. 24(8), pp. 669–672. DOI: 10.1016/j.tplants.2019.06.007.

Xie M., Chen H., Huang L., O’Neil R.C., Shokhirev M.N., Ecker J.R. Nat. Commun., 2018, vol. 9, article 1604. DOI: 10.1038/s41467-018-03921-6.

Kurepa J., Shull T.E., Smalle J.A. Plant Direct, 2019, vol. 3(2), e00121. DOI: 10.1002/pld3.121.

Merewitz E., Xu Y., Huang B. PLoS ONE, 2016, vol. 11(11), e0166676. DOI: 10.1371/journal.pone.0166676.

Xu Y., Huang B. Environmental and Experimental Botany, 2017, vol. 144, pp. 49–60.

Davies P.J. Plant hormones: biosynthesis, signal transduction, action! Kluwer Academic Publishers, Dordrecht, Neth-erlands, 2010, 802 p. DOI: 10.1007/978-1-4020-2686-7.

Vanstraelen M., Benkova E. Annu. Rev. Cell Dev. Biol., 2012, vol. 28, pp. 463–487. DOI: 10.1146/annurev-cellbio-101011-155741.

Kuppusamy K.T., Walcher C.L., Nemhauser J.L. Plant Mol. Biol., 2009, vol. 69(4), pp. 375–381. DOI: 10.1007/s11103-008-9389-2.

El-Yazal S.A.S., El-Yazal M.A.S., Dwidar E.F., Rady M.M. Current Protein & Peptide Science, 2015, vol. 16(5), pp. 395–405. DOI: 10.2174/1389203716666150330141159.

Chumikina L.V., Arabova L.I., Kolpakova V.V., Topunov A.F. Prikladnaya biokhimiya i mikrobiologiya, 2019, vol. 55, no. 1, pp. 77–85. DOI: 10.1134/S0555109919010045. (in Russ.).

Published
2021-12-14
How to Cite
1. Chumikina L. V., Arabova L. I., Kolpakova V. V., Topunov A. F. PHYTHORMONES AND ABIOTIC STRESS (REVIEW) // chemistry of plant raw material, 2021. № 4. P. 5-30. URL: http://journal.asu.ru/cw/article/view/9196.
Section
Reviews