LIGNIN VALORIZATION PROBLEMS

UDC 547.992.3

  • Eduard Ivanovich Evstigneyev St. Petersburg State Forestry Engineering University Email: edward_evst@mail.ru
Keywords: lignin, lignin valorization, hydrogels, medicine, 3D printing, carbon fibers, biofuel, hydrogenolysis, selective oxidation

Abstract

The review considers two directions of lignin valorization: valorization of technical lignins, as such, without preliminary depolymerization, and valorization through monomeric compounds formed as a result of their selective destruction. The first area includes the production of lignin hydrogels, the use of lignin in medicine and pharmacology, 3D printing, as well as in the production of carbon fibers and biofuels.

Lignin hydrogels are distinguished by a high sorption capacity with respect to heavy metals such as lead, iron and copper, which, depending on the content of acidic groups in lignin and the molar mass of sorbate, is ~ 25-50% of the mass of lignin, and therefore they can be used for the purification of waste waters of chemical enterprises. Lignin has high biological activity against various pathogens, including viruses, which makes research in this area very relevant, especially against the backdrop of the COVID-19 pandemic. The use of lignin in some composites for 3D printing can increase the mechanical strength of finished products. The industrial implementation of the technology for the production of carbon fibers from lignin will ensure a twofold reduction in the mass of vehicles.

The second direction of lignin valorization - hydrogenolysis and selective oxidation - allows one to obtain monomeric compounds with a yield close to the theoretical one. The economic aspects of valorization are also considered. In addition, based on a comparison of the results of valorization of coniferous and deciduous lignins, a hypothesis on the structure of native lignin was proposed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Eduard Ivanovich Evstigneyev, St. Petersburg State Forestry Engineering University

доктор химических наук, профессор, профессор кафедры технологии лесохимических продуктов, химии древесины и биотехнологии

References

Ragauskas A.J., Beckham G.T., Biddy M.J., Chandra R., Chen F., Davis M., Davison B.H., Dixon R.A., Gilna P., Keller M., Langan P., Naskar A.K., Saddler J.N., Tschaplinski T.J., Tuskan G.A., Wyman C.E. Science, 2014, vol. 344, 1246843. DOI: 10.1126/science.1246843.

Wu X., Fan X., Xie S., Lin J., Cheng J., Zhang Q., Chen L., Wang Y. Nature Catalysis, 2018, vol. 1, pp. 772–780. DOI: 10.1038/s41929-018-0148-8.

Berlin M., Balakshin M. Bioenergy Research: Advances and Applications, 2014, vol. 18, pp. 315–336. DOI: 10.1016/B978-0-444-59561-4.00018-8.

Azadi P., Inderwildi O.R., Farnood R., King D.A. Renew Sustain Energy Rev., 2013, vol. 21, pp. 506–523. DOI: 10.1016/j.rser.2012.12.022.

Rabinovich M.L. Proceedings of NWBC 2009, Helsinki, Finland, 2009, pp. 111–120.

Chudakov M.I. Promyshlennoye ispol'zovaniye lignina. [Industrial use of lignin]. Moscow, 1983, 200 p. (in Russ.).

Monomers, polymers and composites from renewable resources, ed. M.N. Belgacem, A. Gandini. Amsterdam: Elsevier, 2008.

Rabinovich M.L. Cellulose Chem. Technol., 2010, vol. 44, pp. 173–186.

Deyneko I.P. Khimiya rastitel'nogo syr'ya, 2012, no. 1, pp. 5–20. (in Russ.).

Sazanov Yu.N. IVUZ. «Lesnoy zhurnal», 2014, no. 5, pp. 153–172. (in Russ.).

Thakur S., Govender P.P., Mamo M.A., Tamulevicius S., Mishra Y.K., Thakur V.K. Vacuum, 2017, vol. 146, pp. 342–355. DOI: 10.1016/j.vacuum.2017.08.011.

Rico-García D., Ruiz-Rubio L, Pérez-Alvarez L., Hernández-Olmos S.L., Guerrero-Ramírez G.L., Vilas-Vilela J.L. Polymers, 2020, vol. 12, pp. 81–104. DOI: 10.3390/polym12010081.

Khan S., Ullah A., Ullah K., Rehman N. Designed Monomers and Polymers, 2016, vol. 19, pp. 456–478. DOI: 10.1080/15685551.2016.1169380.

Larrañeta E., Imízcoz M., Toh J.X., Irwin N.J., Ripolin A., Perminova A., Domínguez-Robles J., Rodríguez A., Don-nelly R.F. ACS Sustainable Chem. Eng., 2018, vol. 6, pp. 9037−9046. DOI: 10.1021/acssuschemeng.8b01371.

Musilová L., Mráček A., Kovalcik A., Smolka P., Minařík A., Humpolíček P., Vícha R., Ponížil P. Carbohydr Polym., 2018, vol. 181, pp. 394–403. DOI: org/10.1016/j.carbpol.2017.10.048.

Ravishankar K., Venkatesan M., Preeth Desingh R., Mahalingam A., Sadhasivam B., Subramaniyam R., Dhamodharan R. Mater. Sci. Eng. C, 2019, vol. 102, pp. 447–457. DOI: 10.1016/j.msec.2019.04.038.

Li F., Wang X., Yuan T., Sun R. J. Mater. Chem., 2016, vol. A 4, pp. 11888–11896. DOI: 10.1039/C6TA03779H.

Sun Y., Ma Y., Fang G., Li S., Fu Y. BioResources, 2016, vol. 11, pp. 5731–5742.

Wang Y., Xiong Y., Sun F.-L., Yang Y.-Q., Zhang X.-D. Acta Phys. Chim. Sin., 2016, vol. 32, pp. 2563–2573. DOI: 10.3866/PKU.WHXB201607122.

Jiang P., Sheng X., Yu S., Li H., Lu J., Zhou J., Wang H. Scientific Reports, 2018, vol. 8, pp. 14450–14460. DOI: 10.1038/s41598-018-32672-z.

Yao Q., Xie J., Liu J., Kang H., Liu Y. J. Polym. Res., 2014, vol. 21, pp. 465–481. DOI: 10.1007/s10965-014-0465-9.

Ji X., Zhang Z., Chen J., Yang G., Chen H., Lucia L.A. BioResources, 2017, vol. 12, pp. 5395–5406.

Evstigneyev E.I, Grinenko E.V., Mazur A.S., Vasilyev A.V. J. Wood Chemistry and Technology, 2021, vol.41, pp. 73–82. DOI: 10.1080/02773813.2021.1873389.

Levanova V.P. Lechebnyy lignin. Tsentr sorbtsionnykh tekhnologiy. [Therapeutic lignin. Center for sorption technolo-gies]. St. Petersburg, 1992, 136 p. (in Russ.).

Martínez V., Mitjans M., Vinardell M.P. Current Organic Chemistry, 2012, vol. 16, pp. 1863–1870.

Halliwell B. Am. J. Med., 1991, vol. 91, pp. 14S–22S. DOI: 10.1016/0002-9343(91)90279-7.

Buxton G.V., Greenstock C.L., Helman W.P., Ross A.B. J. Phys. Chem. Ref. Data, 1988, vol. 17, pp. 513–886. DOI: 10.1063/1.555805.

Zhang Y., But P.P., Ooi V.E., Xu H.X., Delaney G.D., Lee S.H., Lee S.F. Antiviral Res., 2007, vol. 75, pp. 242–249. DOI: 10.1016/j.antiviral.2007.03.010.

Sakagami H., Kawano M., Thet M.M., Hashimoto K., Satoh K., Kanamoto T., Terakubo S., Nakashima H., Haishi-ma Y., Maeda Y., Sakurai K. In vivo, 2011, vol. 25, pp. 229–236.

Lee J.B., Chihiro Y., Hayashi K., Hayashi T. Biosci. Biotechnol. Biochem., 2011, vol. 75, pp. 459–465. DOI: 10.1271/bbb.100645.

Sakagami H., Hashimoto K., Suzuki F., Ogiwara T., Satoh K., Ito H., Hatano T., Takashi Y., Fujisawa S. Phytochem-istry, 2005, vol. 66, pp. 2108–2120.

Fedoros E.I., Orlov A.A., Zherebker A., Gubareva E.A., Maydin M.A., Konstantinov A.I., Krasnov K.A., Kara-petian R.N., Izotova E.I., Pigarev S.E., Panchenko A.V., Tyndyk M.T., Osolodkin D.I., Nikolaev E.N., Perminova I.V., Anisimov V.N. Oncotarget, 2018, vol. 9, pp. 18578–18593. DOI: 10.18632/oncotarget.24990.

Kai D., Ren W., Tian L., Chee P.L., Liu Y., Ramakrishna S., Loh X.J. ACS Sustainable Chem. Eng., 2016, vol. 4, pp. 5268–5276. DOI: 10.1021/acssuschemeng.6b00478.

Caicedo H.M., Dempere L.A., Vermerris W. Nanotechnology, 2012, vol. 23, 105605. DOI: 10.1088/0957-4484/23/10/105605.

Ten E., Ling C., Wang Y., Srivastava A., Dempere. L.A., Vermerris W. Biomacromolecules, 2014, vol. 15, pp. 327–338. DOI: 10.1021/bm401555p.

Wang X., Jiang M., Zhou Z., Gou J., Hui D. Composites Part B, 2017, vol. 110, pp. 442–458. DOI: 10.1016/j.compositesb.2016.11.034.

Water J.J., Bohr A., Boetker J., Aho J., Sandler N., Nielsen H. M., Rantanen J. J. Pharm. Sci., 2015, vol. 104, pp. 1099–1107. DOI: 10.1002/jps.24305.

Holländer J., Genina N., Jukarainen H., Khajeheian M., Rosling A., Mäkilä E., Sandler N. J. Pharm. Sci., 2016, vol. 105, pp. 2665–2676. DOI: 10.1016/j.xphs.2015.12.012.

Genina N., Holländer J., Jukarainen H., Mäkilä E., Salonen J., Sandler N. Eur. J. Pharm. Sci., 2016, vol. 90, pp. 53–63. DOI: 10.1016/j.ejps.2015.11.005.

Bhattacharjee N., Urrios A., Kang S., Folch A. Lab. Chip., 2016, vol. 16, pp. 1720–1742. DOI: 10.1039/C6LC00163G.

Xu W., Wang X., Sandler N., Willför S., Xu C. ACS Sustainable Chem. Eng., 2018, vol. 6, pp. 5663−5680. DOI: 10.1021/acssuschemeng.7b03924.

Tanase-Opedal M., Espinosa E., Rodríguez A., Chinga-Carrasco G. Materials, 2019, vol 12, p. 3006. DOI:10.3390/ma12183006.

Gkartzou E., Koumoulos E.P., Charitidis C.A. Manufacturing Rev., 2017, vol. 4, pp. 1–14. DOI: 0.1051/mfreview/2016020.

Domínguez-Robles J., Martin N.K., Fong M.L., Stewart S.A., Irwin N.J., Rial-Hermida M.I., Donnelly R.F., Larrañeta E. Pharmaceutics, 2019, vol. 11, p. 165. DOI: 10.3390/pharmaceutics11040165.

Mimini V., Sykacek E., Syed Hashim S.N.A., Holzweber J., Hettegger H., Fackler K., Potthast A., Mundigler N., Rosenau T. J. Wood Chem. Technol., 2019, vol. 39, pp. 14−30. DOI: 10.1080/02773813.2018.1488875.

Nguyen N.A., Barnes S.H., Bowland C.C., Meek K.M., Littrell K.C., Keum J.K., Naskar A.K. Sci. Adv., 2018, vol. 4, pp. 1–15. DOI: 10.1126/sciadv.aat4967.

Feng X., Yang Z., Chmely S., Wang Q., Wang S., Xie Y. Carbohydr. Polym., 2017, vol. 169, pp. 272−281. DOI: 10.1016/j.carbpol.2017.04.001.

Sutton J.T., Rajan K., Harper D.P., Chmely S.C. ACS. Appl. Mater. Interfaces, 2018, vol. 10, pp. 36456–36463. DOI: 10.1021/acsami.8b13031.

Zhang S., Li M., Hao N., Ragauskas A.J. ACS Omega, 2019, vol. 4, pp. 20197–20204. DOI: 10.1021/acsomega.9b02455.

Yu Yu D.-G., Branford-White C., Ma Z.-H., Zhu L.-M., Li X.-Y., Yang X.-L. Int. J. Pharm., 2009, vol. 370, pp. 160–166. DOI: 10.1016/j.ijpharm.2008.12.008.

Lewis J.A. Adv. Funct. Mater., 2006, vol. 16, pp. 2193–2204. DOI: 10.1002/adfm.200600434.

Markstedt K., Mantas A., Tournier I., Martínez Ávila H.C., Hägg D., Gatenholm P. Biomacromolecules, 2015, vol. 16, pp. 1489–1496. DOI: 10.1021/acs.biomac.5b00188.

Mainkaa H., Tägera O., Körnera O., Hilfert L., Busseb S., Edelmannb F.T., Herrmannc A.S. J. Mater. Res. Technol., 2015, vol. 4, pp. 283–296. DOI: 10.1016/j.jmrt.2015.03.004.

Eberle C., Albers T., Albers C., Webb D. ORNL/TM-2013/54, 2013, pp. 1–24.

Kadla J.F., Kubo S., Venditti R.A., Gilbert R.D., Compere A.L., Griffith W. Carbon, 2002, vol. 40, pp. 2913–2920. DOI: 10.1016/S0008-6223(02)00248-8.

Sevastyanova O., Helander M., Chowdhury S., Lange H., Wedin H., Zhang L., Ek M., Kadla J.F., Crestini C., Lindström M.E. J. Appl. Polym. Sci., 2014, vol. 131, 40799. DOI: 10.1002/app.40799.

Patent 7678358 (US). 2010.

Patent 0274612 (US). 2010.

Zhang M., Ogale A.A. Carbon, 2013, vol. 69, pp. 626–629. DOI: 10.1016/j.carbon.2013.12.015.

Chatterjee S., Clingenpeel A., McKenna A., Rios O., Johs A. RSC Adv., 2014, vol. 4, pp. 4743–4753. DOI: 10.1039/C3RA46928J.

Uraki Y., Nakatani A., Kubo S., Sano Y. J. Wood Sci., 2001, vol. 47, pp. 465–469. DOI: 10.1007/BF00767899.

Greiner A., Wendorff J.H. Angew. Chem., Int. Ed., 2007, vol. 46, pp. 5670–5703. DOI: 10.1002/anie.200604646.

Lallave M., Bedia J., Ruiz-Rosas R., Rodriguez-Mirasol J., Cordero T., Otero J.C., Marquez M., Barrero A., Loscer-tales I.G. Adv. Mater., 2007, vol. 19, pp. 4292–4296. DOI: 10.1002/adma.200700963.

Kumar M., Hietala M., Oksman K. Front. Mater, 2019, vol. 6, pp. 1–6. DOI: 10.3389/fmats.2019.00062.

Baker D.A., Rials T.G. J. Appl. Polym. Sci., 2013, vol. 130, pp. 713–728. DOI: 10.1002/APP.3927.

Braun J.L., Holtman K.M., Kadla J.F. Carbon, 2005, vol. 43, pp. 385–394. DOI: 10.1016/j.carbon.2004.09.027.

Li Y., Cui D., Tong Y., Xu L. Int. J. Biol. Macromol., 2013, vol. 62, pp. 663–669. DOI: 10.1016/j.ijbiomac.2013.09.040.

Brodin I., Ernstsson M., Gellerstedt G., Sjoholm E. Holzforschung, 2012, vol. 66, pp. 141–147. DOI: 10.1515/HF.2011.133.

Norberg I., Nordstrom Y., Drougge R., Gellerstedt G., Sjoholm E. J. Appl. Polym. Sci., 2013, vol. 128, pp. 3824–3830. DOI: 10.1002/app.38588.

Foston M., Nunnery G.A., Meng X., Sun Q., Baker F.S., Ragauskas A. Carbon, 2013, vol. 52, pp. 65–73. DOI: 10.1016/j.carbon.2012.09.006.

Dallmeyer I., Lin L.T., Li Y.J., Ko F., Kadla J.F. Macromol. Mater. Eng., 2014, vol. 299, pp. 540–551. DOI: 10.1002/mame.201300148.

Poursorkhabi V., Mohanty A.K., Misra M. J. Appl. Polym. Sci., 2016, vol. 133, p. 44005. DOI: org/10.1002/app.44005.

Griffith W.L., Compere A.L., Leitten C.F. Jr., Shaffer J.T. 35th ISTC Conference. Dayton, 2003, pp. 1–8.

Zhang M. Ogale A.A.J. Appl. Polym. Sci., 2016, vol. 133, p. 43663. DOI: 10.1002/app.43663.

Yevstigneyev E.I. Khimiya rastitel'nogo syr'ya, 2014, no. 3, pp. 5–42. DOI: 10.14258/jcprm.1403005. (in Russ.).

Sazanov V., Kosyakov D., Krutov S., Kostereva T., Kulikova Y., Shkaeva N., Ladesov A., Ipatova Y., Pokryshkin S., Fedorova G. Eurasian Chem.-Technol. J., 2015, vol. 17, pp. 287–294. DOI: 10.18321/ectj272.

Dumanli A.G., Windle A.H. J. Mater Sci., 2012, vol. 47, pp. 4236–4250. DOI: 10.1007/s10853-011-6081-8.

Kleinert M., Barth T. Energy & Fuels, 2008, vol. 22, pp. 1371–1379. DOI: 10.1021/ef700631w.

Gellerstedt G., Li J., Eide I., Kleinert M., Barth T. Energy & Fuels, 2008, vol. 22, pp. 4240–4244. DOI: 10.1021/ef800402f.

Mahmood N., Yuan Z., Schmidt J., Matthew M., Xu C. Green Chem., 2016, vol. 18, pp. 2385–2398. DOI: 10.1039/c5gc02876k.

Holladay J.E., White J.F., Bozell J.J., Johnson D. U.S. Department of Commerce VA 1-79. 2007, vol. II: Results of screening for potential candidates from biorefinery lignin. 2007.

Rinaldi R., Jastrzebski R., Clough M.T., Ralph J., Kennema M., Bruijnincx P.C.A., Weckhuysen B.M. Angew Chem. Int. Ed., 2016, vol. 55, pp. 8164–8215. DOI: 10.1002/anie.201510351.

Galkin M.V., Samec J.S.M. ChemSusChem, 2016, vol. 9, pp. 1544–1558. DOI: 10.1002/cssc.201600237.

Kärkäs M.D., Matsuura B.S., Monos T.M., Magallanes G., Stephenson C.R.J. Org. Biomol. Chem., 2016, vol. 14, pp. 1853–1914. DOI: 10.1039/C5OB02212F.

Evstigneyev E.I., Shevchenko S.M. Wood Sci. Technol., 2020, vol. 54, pp. 787–820. DOI: 10.1007/s00226-020-01183-4.

Evstigneyev E., Kalugina A.V., Ivanov A.Yu., Vasilyev A.V. J. Wood Chem. Technol., 2017, vol. 37, pp. 294–306. DOI: 10.1080/02773813.2017.1297832.

Evstigneyev E.I. J. Wood Chem. Technol., 2018, vol. 38, pp. 409–415. DOI: 10.1080/02773813.2018.1500607.

Pepper J.M., Lee Y.W. Canadian Journal of Chemistry, 1969, vol. 47, pp. 723–727. DOI: 10.1139/v69-118.

Nahum L.S. Industrial & Engineering Chemistry Product Research and Development, 1965, vol. 42, pp. 71–74. DOI: 10.1021/i360014a003.

Galkin M.V., Samec J.S.M. ChemSusChem, 2014, vol. 7, pp. 2154–2158. DOI: 10.1002/cssc.201402017.

Torr K.M., van de Pas D.J., Cazeils E., Suckling I.D. Bioresource Technology, 2011, vol. 102, pp. 7608–7611. DOI: 10.1016/j.biortech.2011.05.040.

Parsell T., Yohe S., Degenstein J., Jarrell T., Klein I., Gencer E., Abu-Omar M.M. Green Chemistry, 2015, vol. 17, pp. 1492–1499. DOI: 10.1039/C4GC01911C.

Liu Y., Chen L., Wang T., Zhang Q., Wang C., Yan J., Ma L. ACS Sustainable Chemistry & Engineering, 2015, vol. 3, pp. 1745–1755. DOI: 10.1021/acssuschemeng.5b00256.

Van den Bosch S., Schutyser W., Koelewijn S.-F., Renders T., Courtin, C.M., Sels B.F. Chemical Communications, 2015, vol. 51(67), pp. 13158–13161. DOI: 10.1039/c5cc04025f.

Yan N., Zhao C., Dyson P.J., Wang C., Liu L., Kou Y. ChemSusChem, 2008, vol. 1, pp. 626–629. DOI: 10.1002/cssc.200800080.

Li C., Zheng M., Wang A., Zhang T. Energy Environ. Sci., 2012, vol. 5, pp. 6383–6390. DOI: 10.1039/C1EE02684D.

Song Q., Wang F., Cai J., Wang Y., Zhang J., Yua W., Xu J. Energy Environ. Sci., 2013, vol. 6, pp. 994–1007. DOI: 10.1039/C2EE23741E.

Klein I., Marcum C., Kenttämaa H., Abu-Omar M.M. Green Chem., 2016, vol. 18, pp. 2399–2405. DOI: 10.1039/C5GC01325A.

Konnerth H., Zhang J., Ma D., Prechtl M.H.G., Yan N. Chem. Eng. Sci., 2015, vol. 123, pp. 155–163. DOI: 10.1016/j.ces.2014.10.045.

Shao Y., Xia Q., Dong L., Liu X., Han X., Parker S.F., Cheng Y., Daemen L.L., Ramirez-Cuesta A.J., Yang S. Na-ture Commun, 2017, vol. 8, p. 16104. DOI: 10.1038/ncomms16104.

Tarabanko V.E., Hendogina Y.V., Petuhov D.V., Pervishina E. React. Kinet. Catal. Lett., 2000, vol. 69, pp. 361–368.

Tarabanko V.E., Petukhov D.V., Selyutin G.E. Kinet. Catal., 2004, vol. 45, pp. 569–577. DOI: 10.1023/B:KICA.0000038087.95130.a5.

Tarabanko V.E., Tarabanko N. Int. J. Mol. Sci., 2017, vol. 18, pp. 2421–2450. DOI: 10.3390/ijms18112421.

Davis K.M., Rover M., Brown R.C., Bai X., Wen Z., Jarboe L.R. Energies, 2016, vol. 9, pp. 808–836. DOI: 10.3390/en9100808.

Luo J., Melissa P., Zhao W., Wang Z., Zhu Y. Chemistry Select Communications, 2016, vol. 1, pp. 4596–4601. DOI: 10.1002/slct.201600758.

Evstigneyev E.I. Russian Journal of Applied Chemistry, 2013, vol. 86, pp. 258–265.

Evstigneev E.I., Yuzikhin O.S., Gurinov A.A., Ivanov A.Yu., Artamonova T.O., Khodorkovskii M.A., Bessono-va E.A., Vasil’ev A.V. Russian Journal of Applied Chemistry, 2015, vol. 88, pp. 1295–1303.

Zaitceva O., Louis B., Beneteau V., Pale P., Shanmugam S., Evstigneyev E.I., Vasiliev A.V. Catalysis Today, 2021, vol. 367, pp. 111–116. DOI: 10.1016/j.cattod.2020.06.081.

Bajwaa D.S., Pourhashemb G., Ullahb A.H., Bajwac S.G. Industrial Crops & Products, 2019, vol. 139, p. 111526. DOI: 10.1016/j.indcrop.2019.111526.

Yevstigneyev E.I. Izvestiya SPbGLTA, 2012, vol. 198, pp. 176–185. (in Russ.).

Evstigneyev E.I., Shevchenko S.M. Wood Sci. Technol., 2019, vol. 53, pp. 7–47. DOI: 10.1007/s00226-018-1059-1.

Evtuguin D.V., Amado F.M.L. Macromol. Biosci., 2003, vol. 3, pp. 339–343. DOI: 10.1002/mabi.200350006.

Published
2022-03-10
How to Cite
1. Evstigneyev E. I. LIGNIN VALORIZATION PROBLEMS // chemistry of plant raw material, 2022. № 1. P. 11-33. URL: http://journal.asu.ru/cw/article/view/9211.
Section
Reviews