LIGNIN VALORIZATION PROBLEMS
UDC 547.992.3
Abstract
The review considers two directions of lignin valorization: valorization of technical lignins, as such, without preliminary depolymerization, and valorization through monomeric compounds formed as a result of their selective destruction. The first area includes the production of lignin hydrogels, the use of lignin in medicine and pharmacology, 3D printing, as well as in the production of carbon fibers and biofuels.
Lignin hydrogels are distinguished by a high sorption capacity with respect to heavy metals such as lead, iron and copper, which, depending on the content of acidic groups in lignin and the molar mass of sorbate, is ~ 25-50% of the mass of lignin, and therefore they can be used for the purification of waste waters of chemical enterprises. Lignin has high biological activity against various pathogens, including viruses, which makes research in this area very relevant, especially against the backdrop of the COVID-19 pandemic. The use of lignin in some composites for 3D printing can increase the mechanical strength of finished products. The industrial implementation of the technology for the production of carbon fibers from lignin will ensure a twofold reduction in the mass of vehicles.
The second direction of lignin valorization - hydrogenolysis and selective oxidation - allows one to obtain monomeric compounds with a yield close to the theoretical one. The economic aspects of valorization are also considered. In addition, based on a comparison of the results of valorization of coniferous and deciduous lignins, a hypothesis on the structure of native lignin was proposed.
Downloads
Metrics
References
Ragauskas A.J., Beckham G.T., Biddy M.J., Chandra R., Chen F., Davis M., Davison B.H., Dixon R.A., Gilna P., Keller M., Langan P., Naskar A.K., Saddler J.N., Tschaplinski T.J., Tuskan G.A., Wyman C.E. Science, 2014, vol. 344, 1246843. DOI: 10.1126/science.1246843.
Wu X., Fan X., Xie S., Lin J., Cheng J., Zhang Q., Chen L., Wang Y. Nature Catalysis, 2018, vol. 1, pp. 772–780. DOI: 10.1038/s41929-018-0148-8.
Berlin M., Balakshin M. Bioenergy Research: Advances and Applications, 2014, vol. 18, pp. 315–336. DOI: 10.1016/B978-0-444-59561-4.00018-8.
Azadi P., Inderwildi O.R., Farnood R., King D.A. Renew Sustain Energy Rev., 2013, vol. 21, pp. 506–523. DOI: 10.1016/j.rser.2012.12.022.
Rabinovich M.L. Proceedings of NWBC 2009, Helsinki, Finland, 2009, pp. 111–120.
Chudakov M.I. Promyshlennoye ispol'zovaniye lignina. [Industrial use of lignin]. Moscow, 1983, 200 p. (in Russ.).
Monomers, polymers and composites from renewable resources, ed. M.N. Belgacem, A. Gandini. Amsterdam: Elsevier, 2008.
Rabinovich M.L. Cellulose Chem. Technol., 2010, vol. 44, pp. 173–186.
Deyneko I.P. Khimiya rastitel'nogo syr'ya, 2012, no. 1, pp. 5–20. (in Russ.).
Sazanov Yu.N. IVUZ. «Lesnoy zhurnal», 2014, no. 5, pp. 153–172. (in Russ.).
Thakur S., Govender P.P., Mamo M.A., Tamulevicius S., Mishra Y.K., Thakur V.K. Vacuum, 2017, vol. 146, pp. 342–355. DOI: 10.1016/j.vacuum.2017.08.011.
Rico-García D., Ruiz-Rubio L, Pérez-Alvarez L., Hernández-Olmos S.L., Guerrero-Ramírez G.L., Vilas-Vilela J.L. Polymers, 2020, vol. 12, pp. 81–104. DOI: 10.3390/polym12010081.
Khan S., Ullah A., Ullah K., Rehman N. Designed Monomers and Polymers, 2016, vol. 19, pp. 456–478. DOI: 10.1080/15685551.2016.1169380.
Larrañeta E., Imízcoz M., Toh J.X., Irwin N.J., Ripolin A., Perminova A., Domínguez-Robles J., Rodríguez A., Don-nelly R.F. ACS Sustainable Chem. Eng., 2018, vol. 6, pp. 9037−9046. DOI: 10.1021/acssuschemeng.8b01371.
Musilová L., Mráček A., Kovalcik A., Smolka P., Minařík A., Humpolíček P., Vícha R., Ponížil P. Carbohydr Polym., 2018, vol. 181, pp. 394–403. DOI: org/10.1016/j.carbpol.2017.10.048.
Ravishankar K., Venkatesan M., Preeth Desingh R., Mahalingam A., Sadhasivam B., Subramaniyam R., Dhamodharan R. Mater. Sci. Eng. C, 2019, vol. 102, pp. 447–457. DOI: 10.1016/j.msec.2019.04.038.
Li F., Wang X., Yuan T., Sun R. J. Mater. Chem., 2016, vol. A 4, pp. 11888–11896. DOI: 10.1039/C6TA03779H.
Sun Y., Ma Y., Fang G., Li S., Fu Y. BioResources, 2016, vol. 11, pp. 5731–5742.
Wang Y., Xiong Y., Sun F.-L., Yang Y.-Q., Zhang X.-D. Acta Phys. Chim. Sin., 2016, vol. 32, pp. 2563–2573. DOI: 10.3866/PKU.WHXB201607122.
Jiang P., Sheng X., Yu S., Li H., Lu J., Zhou J., Wang H. Scientific Reports, 2018, vol. 8, pp. 14450–14460. DOI: 10.1038/s41598-018-32672-z.
Yao Q., Xie J., Liu J., Kang H., Liu Y. J. Polym. Res., 2014, vol. 21, pp. 465–481. DOI: 10.1007/s10965-014-0465-9.
Ji X., Zhang Z., Chen J., Yang G., Chen H., Lucia L.A. BioResources, 2017, vol. 12, pp. 5395–5406.
Evstigneyev E.I, Grinenko E.V., Mazur A.S., Vasilyev A.V. J. Wood Chemistry and Technology, 2021, vol.41, pp. 73–82. DOI: 10.1080/02773813.2021.1873389.
Levanova V.P. Lechebnyy lignin. Tsentr sorbtsionnykh tekhnologiy. [Therapeutic lignin. Center for sorption technolo-gies]. St. Petersburg, 1992, 136 p. (in Russ.).
Martínez V., Mitjans M., Vinardell M.P. Current Organic Chemistry, 2012, vol. 16, pp. 1863–1870.
Halliwell B. Am. J. Med., 1991, vol. 91, pp. 14S–22S. DOI: 10.1016/0002-9343(91)90279-7.
Buxton G.V., Greenstock C.L., Helman W.P., Ross A.B. J. Phys. Chem. Ref. Data, 1988, vol. 17, pp. 513–886. DOI: 10.1063/1.555805.
Zhang Y., But P.P., Ooi V.E., Xu H.X., Delaney G.D., Lee S.H., Lee S.F. Antiviral Res., 2007, vol. 75, pp. 242–249. DOI: 10.1016/j.antiviral.2007.03.010.
Sakagami H., Kawano M., Thet M.M., Hashimoto K., Satoh K., Kanamoto T., Terakubo S., Nakashima H., Haishi-ma Y., Maeda Y., Sakurai K. In vivo, 2011, vol. 25, pp. 229–236.
Lee J.B., Chihiro Y., Hayashi K., Hayashi T. Biosci. Biotechnol. Biochem., 2011, vol. 75, pp. 459–465. DOI: 10.1271/bbb.100645.
Sakagami H., Hashimoto K., Suzuki F., Ogiwara T., Satoh K., Ito H., Hatano T., Takashi Y., Fujisawa S. Phytochem-istry, 2005, vol. 66, pp. 2108–2120.
Fedoros E.I., Orlov A.A., Zherebker A., Gubareva E.A., Maydin M.A., Konstantinov A.I., Krasnov K.A., Kara-petian R.N., Izotova E.I., Pigarev S.E., Panchenko A.V., Tyndyk M.T., Osolodkin D.I., Nikolaev E.N., Perminova I.V., Anisimov V.N. Oncotarget, 2018, vol. 9, pp. 18578–18593. DOI: 10.18632/oncotarget.24990.
Kai D., Ren W., Tian L., Chee P.L., Liu Y., Ramakrishna S., Loh X.J. ACS Sustainable Chem. Eng., 2016, vol. 4, pp. 5268–5276. DOI: 10.1021/acssuschemeng.6b00478.
Caicedo H.M., Dempere L.A., Vermerris W. Nanotechnology, 2012, vol. 23, 105605. DOI: 10.1088/0957-4484/23/10/105605.
Ten E., Ling C., Wang Y., Srivastava A., Dempere. L.A., Vermerris W. Biomacromolecules, 2014, vol. 15, pp. 327–338. DOI: 10.1021/bm401555p.
Wang X., Jiang M., Zhou Z., Gou J., Hui D. Composites Part B, 2017, vol. 110, pp. 442–458. DOI: 10.1016/j.compositesb.2016.11.034.
Water J.J., Bohr A., Boetker J., Aho J., Sandler N., Nielsen H. M., Rantanen J. J. Pharm. Sci., 2015, vol. 104, pp. 1099–1107. DOI: 10.1002/jps.24305.
Holländer J., Genina N., Jukarainen H., Khajeheian M., Rosling A., Mäkilä E., Sandler N. J. Pharm. Sci., 2016, vol. 105, pp. 2665–2676. DOI: 10.1016/j.xphs.2015.12.012.
Genina N., Holländer J., Jukarainen H., Mäkilä E., Salonen J., Sandler N. Eur. J. Pharm. Sci., 2016, vol. 90, pp. 53–63. DOI: 10.1016/j.ejps.2015.11.005.
Bhattacharjee N., Urrios A., Kang S., Folch A. Lab. Chip., 2016, vol. 16, pp. 1720–1742. DOI: 10.1039/C6LC00163G.
Xu W., Wang X., Sandler N., Willför S., Xu C. ACS Sustainable Chem. Eng., 2018, vol. 6, pp. 5663−5680. DOI: 10.1021/acssuschemeng.7b03924.
Tanase-Opedal M., Espinosa E., Rodríguez A., Chinga-Carrasco G. Materials, 2019, vol 12, p. 3006. DOI:10.3390/ma12183006.
Gkartzou E., Koumoulos E.P., Charitidis C.A. Manufacturing Rev., 2017, vol. 4, pp. 1–14. DOI: 0.1051/mfreview/2016020.
Domínguez-Robles J., Martin N.K., Fong M.L., Stewart S.A., Irwin N.J., Rial-Hermida M.I., Donnelly R.F., Larrañeta E. Pharmaceutics, 2019, vol. 11, p. 165. DOI: 10.3390/pharmaceutics11040165.
Mimini V., Sykacek E., Syed Hashim S.N.A., Holzweber J., Hettegger H., Fackler K., Potthast A., Mundigler N., Rosenau T. J. Wood Chem. Technol., 2019, vol. 39, pp. 14−30. DOI: 10.1080/02773813.2018.1488875.
Nguyen N.A., Barnes S.H., Bowland C.C., Meek K.M., Littrell K.C., Keum J.K., Naskar A.K. Sci. Adv., 2018, vol. 4, pp. 1–15. DOI: 10.1126/sciadv.aat4967.
Feng X., Yang Z., Chmely S., Wang Q., Wang S., Xie Y. Carbohydr. Polym., 2017, vol. 169, pp. 272−281. DOI: 10.1016/j.carbpol.2017.04.001.
Sutton J.T., Rajan K., Harper D.P., Chmely S.C. ACS. Appl. Mater. Interfaces, 2018, vol. 10, pp. 36456–36463. DOI: 10.1021/acsami.8b13031.
Zhang S., Li M., Hao N., Ragauskas A.J. ACS Omega, 2019, vol. 4, pp. 20197–20204. DOI: 10.1021/acsomega.9b02455.
Yu Yu D.-G., Branford-White C., Ma Z.-H., Zhu L.-M., Li X.-Y., Yang X.-L. Int. J. Pharm., 2009, vol. 370, pp. 160–166. DOI: 10.1016/j.ijpharm.2008.12.008.
Lewis J.A. Adv. Funct. Mater., 2006, vol. 16, pp. 2193–2204. DOI: 10.1002/adfm.200600434.
Markstedt K., Mantas A., Tournier I., Martínez Ávila H.C., Hägg D., Gatenholm P. Biomacromolecules, 2015, vol. 16, pp. 1489–1496. DOI: 10.1021/acs.biomac.5b00188.
Mainkaa H., Tägera O., Körnera O., Hilfert L., Busseb S., Edelmannb F.T., Herrmannc A.S. J. Mater. Res. Technol., 2015, vol. 4, pp. 283–296. DOI: 10.1016/j.jmrt.2015.03.004.
Eberle C., Albers T., Albers C., Webb D. ORNL/TM-2013/54, 2013, pp. 1–24.
Kadla J.F., Kubo S., Venditti R.A., Gilbert R.D., Compere A.L., Griffith W. Carbon, 2002, vol. 40, pp. 2913–2920. DOI: 10.1016/S0008-6223(02)00248-8.
Sevastyanova O., Helander M., Chowdhury S., Lange H., Wedin H., Zhang L., Ek M., Kadla J.F., Crestini C., Lindström M.E. J. Appl. Polym. Sci., 2014, vol. 131, 40799. DOI: 10.1002/app.40799.
Patent 7678358 (US). 2010.
Patent 0274612 (US). 2010.
Zhang M., Ogale A.A. Carbon, 2013, vol. 69, pp. 626–629. DOI: 10.1016/j.carbon.2013.12.015.
Chatterjee S., Clingenpeel A., McKenna A., Rios O., Johs A. RSC Adv., 2014, vol. 4, pp. 4743–4753. DOI: 10.1039/C3RA46928J.
Uraki Y., Nakatani A., Kubo S., Sano Y. J. Wood Sci., 2001, vol. 47, pp. 465–469. DOI: 10.1007/BF00767899.
Greiner A., Wendorff J.H. Angew. Chem., Int. Ed., 2007, vol. 46, pp. 5670–5703. DOI: 10.1002/anie.200604646.
Lallave M., Bedia J., Ruiz-Rosas R., Rodriguez-Mirasol J., Cordero T., Otero J.C., Marquez M., Barrero A., Loscer-tales I.G. Adv. Mater., 2007, vol. 19, pp. 4292–4296. DOI: 10.1002/adma.200700963.
Kumar M., Hietala M., Oksman K. Front. Mater, 2019, vol. 6, pp. 1–6. DOI: 10.3389/fmats.2019.00062.
Baker D.A., Rials T.G. J. Appl. Polym. Sci., 2013, vol. 130, pp. 713–728. DOI: 10.1002/APP.3927.
Braun J.L., Holtman K.M., Kadla J.F. Carbon, 2005, vol. 43, pp. 385–394. DOI: 10.1016/j.carbon.2004.09.027.
Li Y., Cui D., Tong Y., Xu L. Int. J. Biol. Macromol., 2013, vol. 62, pp. 663–669. DOI: 10.1016/j.ijbiomac.2013.09.040.
Brodin I., Ernstsson M., Gellerstedt G., Sjoholm E. Holzforschung, 2012, vol. 66, pp. 141–147. DOI: 10.1515/HF.2011.133.
Norberg I., Nordstrom Y., Drougge R., Gellerstedt G., Sjoholm E. J. Appl. Polym. Sci., 2013, vol. 128, pp. 3824–3830. DOI: 10.1002/app.38588.
Foston M., Nunnery G.A., Meng X., Sun Q., Baker F.S., Ragauskas A. Carbon, 2013, vol. 52, pp. 65–73. DOI: 10.1016/j.carbon.2012.09.006.
Dallmeyer I., Lin L.T., Li Y.J., Ko F., Kadla J.F. Macromol. Mater. Eng., 2014, vol. 299, pp. 540–551. DOI: 10.1002/mame.201300148.
Poursorkhabi V., Mohanty A.K., Misra M. J. Appl. Polym. Sci., 2016, vol. 133, p. 44005. DOI: org/10.1002/app.44005.
Griffith W.L., Compere A.L., Leitten C.F. Jr., Shaffer J.T. 35th ISTC Conference. Dayton, 2003, pp. 1–8.
Zhang M. Ogale A.A.J. Appl. Polym. Sci., 2016, vol. 133, p. 43663. DOI: 10.1002/app.43663.
Yevstigneyev E.I. Khimiya rastitel'nogo syr'ya, 2014, no. 3, pp. 5–42. DOI: 10.14258/jcprm.1403005. (in Russ.).
Sazanov V., Kosyakov D., Krutov S., Kostereva T., Kulikova Y., Shkaeva N., Ladesov A., Ipatova Y., Pokryshkin S., Fedorova G. Eurasian Chem.-Technol. J., 2015, vol. 17, pp. 287–294. DOI: 10.18321/ectj272.
Dumanli A.G., Windle A.H. J. Mater Sci., 2012, vol. 47, pp. 4236–4250. DOI: 10.1007/s10853-011-6081-8.
Kleinert M., Barth T. Energy & Fuels, 2008, vol. 22, pp. 1371–1379. DOI: 10.1021/ef700631w.
Gellerstedt G., Li J., Eide I., Kleinert M., Barth T. Energy & Fuels, 2008, vol. 22, pp. 4240–4244. DOI: 10.1021/ef800402f.
Mahmood N., Yuan Z., Schmidt J., Matthew M., Xu C. Green Chem., 2016, vol. 18, pp. 2385–2398. DOI: 10.1039/c5gc02876k.
Holladay J.E., White J.F., Bozell J.J., Johnson D. U.S. Department of Commerce VA 1-79. 2007, vol. II: Results of screening for potential candidates from biorefinery lignin. 2007.
Rinaldi R., Jastrzebski R., Clough M.T., Ralph J., Kennema M., Bruijnincx P.C.A., Weckhuysen B.M. Angew Chem. Int. Ed., 2016, vol. 55, pp. 8164–8215. DOI: 10.1002/anie.201510351.
Galkin M.V., Samec J.S.M. ChemSusChem, 2016, vol. 9, pp. 1544–1558. DOI: 10.1002/cssc.201600237.
Kärkäs M.D., Matsuura B.S., Monos T.M., Magallanes G., Stephenson C.R.J. Org. Biomol. Chem., 2016, vol. 14, pp. 1853–1914. DOI: 10.1039/C5OB02212F.
Evstigneyev E.I., Shevchenko S.M. Wood Sci. Technol., 2020, vol. 54, pp. 787–820. DOI: 10.1007/s00226-020-01183-4.
Evstigneyev E., Kalugina A.V., Ivanov A.Yu., Vasilyev A.V. J. Wood Chem. Technol., 2017, vol. 37, pp. 294–306. DOI: 10.1080/02773813.2017.1297832.
Evstigneyev E.I. J. Wood Chem. Technol., 2018, vol. 38, pp. 409–415. DOI: 10.1080/02773813.2018.1500607.
Pepper J.M., Lee Y.W. Canadian Journal of Chemistry, 1969, vol. 47, pp. 723–727. DOI: 10.1139/v69-118.
Nahum L.S. Industrial & Engineering Chemistry Product Research and Development, 1965, vol. 42, pp. 71–74. DOI: 10.1021/i360014a003.
Galkin M.V., Samec J.S.M. ChemSusChem, 2014, vol. 7, pp. 2154–2158. DOI: 10.1002/cssc.201402017.
Torr K.M., van de Pas D.J., Cazeils E., Suckling I.D. Bioresource Technology, 2011, vol. 102, pp. 7608–7611. DOI: 10.1016/j.biortech.2011.05.040.
Parsell T., Yohe S., Degenstein J., Jarrell T., Klein I., Gencer E., Abu-Omar M.M. Green Chemistry, 2015, vol. 17, pp. 1492–1499. DOI: 10.1039/C4GC01911C.
Liu Y., Chen L., Wang T., Zhang Q., Wang C., Yan J., Ma L. ACS Sustainable Chemistry & Engineering, 2015, vol. 3, pp. 1745–1755. DOI: 10.1021/acssuschemeng.5b00256.
Van den Bosch S., Schutyser W., Koelewijn S.-F., Renders T., Courtin, C.M., Sels B.F. Chemical Communications, 2015, vol. 51(67), pp. 13158–13161. DOI: 10.1039/c5cc04025f.
Yan N., Zhao C., Dyson P.J., Wang C., Liu L., Kou Y. ChemSusChem, 2008, vol. 1, pp. 626–629. DOI: 10.1002/cssc.200800080.
Li C., Zheng M., Wang A., Zhang T. Energy Environ. Sci., 2012, vol. 5, pp. 6383–6390. DOI: 10.1039/C1EE02684D.
Song Q., Wang F., Cai J., Wang Y., Zhang J., Yua W., Xu J. Energy Environ. Sci., 2013, vol. 6, pp. 994–1007. DOI: 10.1039/C2EE23741E.
Klein I., Marcum C., Kenttämaa H., Abu-Omar M.M. Green Chem., 2016, vol. 18, pp. 2399–2405. DOI: 10.1039/C5GC01325A.
Konnerth H., Zhang J., Ma D., Prechtl M.H.G., Yan N. Chem. Eng. Sci., 2015, vol. 123, pp. 155–163. DOI: 10.1016/j.ces.2014.10.045.
Shao Y., Xia Q., Dong L., Liu X., Han X., Parker S.F., Cheng Y., Daemen L.L., Ramirez-Cuesta A.J., Yang S. Na-ture Commun, 2017, vol. 8, p. 16104. DOI: 10.1038/ncomms16104.
Tarabanko V.E., Hendogina Y.V., Petuhov D.V., Pervishina E. React. Kinet. Catal. Lett., 2000, vol. 69, pp. 361–368.
Tarabanko V.E., Petukhov D.V., Selyutin G.E. Kinet. Catal., 2004, vol. 45, pp. 569–577. DOI: 10.1023/B:KICA.0000038087.95130.a5.
Tarabanko V.E., Tarabanko N. Int. J. Mol. Sci., 2017, vol. 18, pp. 2421–2450. DOI: 10.3390/ijms18112421.
Davis K.M., Rover M., Brown R.C., Bai X., Wen Z., Jarboe L.R. Energies, 2016, vol. 9, pp. 808–836. DOI: 10.3390/en9100808.
Luo J., Melissa P., Zhao W., Wang Z., Zhu Y. Chemistry Select Communications, 2016, vol. 1, pp. 4596–4601. DOI: 10.1002/slct.201600758.
Evstigneyev E.I. Russian Journal of Applied Chemistry, 2013, vol. 86, pp. 258–265.
Evstigneev E.I., Yuzikhin O.S., Gurinov A.A., Ivanov A.Yu., Artamonova T.O., Khodorkovskii M.A., Bessono-va E.A., Vasil’ev A.V. Russian Journal of Applied Chemistry, 2015, vol. 88, pp. 1295–1303.
Zaitceva O., Louis B., Beneteau V., Pale P., Shanmugam S., Evstigneyev E.I., Vasiliev A.V. Catalysis Today, 2021, vol. 367, pp. 111–116. DOI: 10.1016/j.cattod.2020.06.081.
Bajwaa D.S., Pourhashemb G., Ullahb A.H., Bajwac S.G. Industrial Crops & Products, 2019, vol. 139, p. 111526. DOI: 10.1016/j.indcrop.2019.111526.
Yevstigneyev E.I. Izvestiya SPbGLTA, 2012, vol. 198, pp. 176–185. (in Russ.).
Evstigneyev E.I., Shevchenko S.M. Wood Sci. Technol., 2019, vol. 53, pp. 7–47. DOI: 10.1007/s00226-018-1059-1.
Evtuguin D.V., Amado F.M.L. Macromol. Biosci., 2003, vol. 3, pp. 339–343. DOI: 10.1002/mabi.200350006.
Copyright (c) 2022 chemistry of plant raw material
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.