COMPARISON OF THE ADSORPTION CAPACITY OF CARBON SORBENTS FROM DIFFERENT PLANT PRECURSORS

UDC 662.71

  • Andrey Aleksandrovich Spitsyn Saint Petersburg State Forestry University named after CM. Kirov Email: spitsyn.andrey@gmail.com
  • Mariya Igorevna Minich Saint Petersburg State Forestry University named after CM. Kirov Email: vampiresuperman@gmail.com
  • Dmitriy Andreyevich Ponomarev Saint Petersburg State Forestry University named after CM. Kirov Email: dponomarev1@mail.ru
  • Nikolay Ivanovich Bogdanovich Northern (Arctic) Federal University named after M.V. Lomonosov Email: n.bagdaovich@narfu.ru
Keywords: activated carbon, sorption capacity, plant wastes

Abstract

The sorption capacity of activated carbon obtained from various plant precursors – apple wood, birch wood, pine cones and cellolignin was studied. The plant material was first subjected to carbonation by heating to a temperature of 700 °C and further exposure at this temperature. The total heating time was 8 hours. Charcoal was then subjected to steam activation at a reactor temperature of 950 °C and an activation time of 40–45 minutes. The yield of activated carbon estimated on charcoal was 42–46%. The characteristics of the porous structure were determined by the method of low-temperature nitrogen adsorption. The total specific surface area according to the BET method was (m2/g) 674, 594, 552, 552, 622 for apple wood, birch wood, pine cones, cellolignin and an industrial sample of activated carbon, respectively. Determination of the adsorption capacity by iodine adsorption methods showed that this value, depending on the source of raw materials, falls in the order: birch wood > cellolignin ≈ apple wood > pine cones. The data on the sorption of benzene characterize approximately the same range of sorption capacity: birch wood > cellolignin > pine cones ≈ apple wood. The data on the sorption capacity show that unconventional plant raw materials can be used to produce activated carbon.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Andrey Aleksandrovich Spitsyn, Saint Petersburg State Forestry University named after CM. Kirov

доцент

Mariya Igorevna Minich, Saint Petersburg State Forestry University named after CM. Kirov

магистрант

Dmitriy Andreyevich Ponomarev, Saint Petersburg State Forestry University named after CM. Kirov

профессор кафедры химии

Nikolay Ivanovich Bogdanovich, Northern (Arctic) Federal University named after M.V. Lomonosov

профессор

References

Zhao W., Luo L., Wang H., Fan M. BioResources, 2017, vol. 12, no. 1, pp. 1246–1262. DOI: 10.15376/biores.12.1.1246-1262.

Chen Y., Liu D., Shen Z., Bao B., Zhao S., Wu L. Electrochemica Acta, 2015, vol. 180, pp. 241–251. DOI: 10.1016/j.electacta.2015.08.133.

Amerkhanova Sh., Uali A., Zhaslan R. Khimiya rastitel'nogo syr'ya, 2015, no. 1, pp. 205–209. DOI: 10.14258/jcprm.201501302. (in Russ.).

Zhao S., Chen L. Biomass Conversion and Biorefinery, 2020, pp. 1–11. DOI: 10.1007/s13399-020-00921-9.

Abe I., Fukuhara T., Iwasaki S., Yasuda K., Nakagawa K., Iwata Y., Kominami H., Kera Y. Carbon, 2001, vol. 39, pp. 1485–1490. DOI: 10.1016/S0008-6223(00)00273-6.

Tay T., Ucar S., Karagöz S. Journal of Hazardous Materials, 2009, vol. 165, pp. 481–485. DOI: 10.1016/j.jhazmat.2008.10.011.

Bouchelta C., Medjram M.S., Bertrand O., Bellat J.-P. Journal of Analytical and Applied Pyrolysis, 2008, vol. 82, pp. 70–77. DOI: 10.1016/j.jaap.2007.12.009.

Ahmad A., Loh M., Aziz J. Dyes and pigments, 2007, vol. 75, pp. 263–272. DOI: 10.1016/j.dyepig.2006.05.034.

Rugayah A., Astimar A., Norzita N. Journal of Oil Palm Research, 2014, vol. 26, pp. 251–264.

Zhang Y.-J., Xing Z.-J., Duan Z.-K., Li M., Wang Y. Applied Surface Science, 2014, vol. 315, pp. 279–286. DOI: 10.1016/j.apsusc.2014.07.126.

Mukhin V.M., Tarasov A.V., Klushin V.N. Aktivnyye ugli Rossii. [Active coals of Russia]. Moscow, 2000, 352 p. (in Russ.).

Marsh H., Rodriquez-Reinoso. Activated Carbon, 2006, 536 p.

Burakov A.E., Galunin E.V., Burakova I.V., Kucheriva A.E., Agarwal S., Tkachev A.G., Gupta V. Ecotoxicology and Environmental Safety, 2018, vol. 148, pp. 702–712. DOI: 10.1016/j.ecoenv.2017.11.034.

Yahya M.A., Al-Qodah Z., Zanariah Ngah C.W. Renewable and Sustainable Energy Reviews, 2015, vol. 46, pp. 218–235. DOI:10.1016/j.rser.2015.02.051.

Qiao Y., He C., Zhang C., Yi K., Li F. Bioresources, 2019, vol. 14, no. 4, pp. 9765–9780. DOI: 10.15376/biores.14.4.9766-9780.

Nanda S., Dalai A.K., Berruti F., Kozinski J.A. Waste Biomass Valor, 2016, vol. 7, no. 2, pp. 201–235. DOI: 10.1007/s12649-015-9459-z.

Obolenskaya A.V., Yel'nitskaya Z.P., Leonovich A.A. Laboratornyye raboty po khimii drevesiny i tsellyulozy. [Labor-atory work on the chemistry of wood and cellulose]. Moscow, 1991, 320 p. (in Russ.).

Chu K.N., Spitsyn A.A., Romanenko K.A., Ponomarev D.A. Lesnoy zhurnal, 2018, no. 4, pp. 140–149. DOI: 10.17238/issn0536-1036.2018.4.140. (in Russ.).

Beletskaya M.G. Sintez uglerodnykh sorbentov metodom termokhimicheskoy aktivatsii gidroliznogo lignina s ispol'zovaniyem gidroksida natriya: diss. … kand. khim. nauk. [Synthesis of carbon sorbents by thermochemical acti-vation of hydrolysis lignin using sodium hydroxide: diss. ... Cand. chem. sciences]. Arkhangel'sk, 2014, 153 p. (in Russ.).

Sing K.S.W. Pure and Applied Chemistry, 1985, vol. 57, no. 4, pp. 603‒619.

Published
2021-12-14
How to Cite
1. Spitsyn A. A., Minich M. I., Ponomarev D. A., Bogdanovich N. I. COMPARISON OF THE ADSORPTION CAPACITY OF CARBON SORBENTS FROM DIFFERENT PLANT PRECURSORS // chemistry of plant raw material, 2021. № 4. P. 345-350. URL: http://journal.asu.ru/cw/article/view/9250.
Section
Technology