ON THE FRUIT AND VEGETABLES PLANT CELL WALL HEMICELLULOSE COMPOUND STRUCTURE

UDC 577.1

  • Mariya Aleksandrovna Tsareva All-Russian Researching Institute of Canning Technology — the branch of Federal State Budgetary Science Institution «V.M. Gorbatov Federal Research Center for Food Systems» of Russian Academy of Sciences Email: tsareva@vniitek.ru
Keywords: hemicelluloses, carbohydrates, xylans, mannans, arabinans, galactans

Abstract

Plant raw material biochemical characteristics may vary depending on it`s species, organ and tissue type and even cultivation facilities, and this dependence may discover a great field of interest for researches. These researches may result not only in fundamental information on plant biochemical development regularity, but in determination of plant potential as a raw material for biological active additives obtaining. The neutral oligo- and polysachharides of cell wall belonging to hemicelluloses have different structure depending on plant tissue type and plant species. The polysachharides isolating from plant raw material can be used in food technology as thickeners and sorbents (pectin, gums), so the structure determinating for different plant species can be useful in technological potential determination of studying plant raw material for food additives obtaining. The article presents the review on hemicelluloses structures and hemicelluloses complex researches for different types of fruit and berries raw material in purchase to estimate the availability of the raw plant material as a food additives source. Analyzed resources allows us to conclude that there is no visible regularity in hemicellulose complex of studied fruit and berry species, and all of these species can be a used as a sourse of polysachharides, excepts black currant because of high level of oligosachharides and sugar beet because of low hemicellulose yields. Gelling ability appears only in polysachharides.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Mariya Aleksandrovna Tsareva, All-Russian Researching Institute of Canning Technology — the branch of Federal State Budgetary Science Institution «V.M. Gorbatov Federal Research Center for Food Systems» of Russian Academy of Sciences

аспирант, старший научный сотрудник

References

Dudkin M.S., Gromov V.S., Vedernikov N.A., Katkevich R.G., Cherno N.K. Gemitsellyulozy. [Hemicelluloses]. Riga, 1991, 488 p. (in Russ.).

Tsareva M.A. Materialy XIII Mezhdunarodnoy nauchno-prakticheskoy konferentsii molodykh uchenykh i spetsialistov «Perspektivnyye issledovaniya i novyye podkhody k proizvodstvu i pererabotke sel'skokhozyaystvennogo syr'ya i produktov pitaniya». [Proceedings of the XIII International Scientific and Practical Conference of Young Scientists and Specialists "Perspective Research and New Approaches to the Production and Processing of Agricultural Raw Materi-als and Food Products"]. 2020, pp. 363–368. (in Russ.).

Kondratenko V.V., Tsareva M.A., Rachkova V.P., Korolev A.A., Davydova A.Yu. Pishchevaya promyshlennost', 2020, no. 11, pp. 80–85. (in Russ.).

Odonmazig P., Ebringerov A., Badga D., Eek F.S.J. Journal of Science Food Agriculture, 1985, vol. 36, pp. 575–582.

Hamauzu Y., Kume C., Yasui H., Fujita T. Journal of Agricultural and Food Chemistry, 2007, vol. 55, pp. 1221–1226. DOI: 10.1021/jf061836+.

Lahaye M., Falourd X., Quemener B., Devaux M.-F., Audergon J.-M. LWT-Food Science and Technology, 2014, vol. 58, pp. 486–496. DOI: 10.1016/j.lwt.2014.04.009.

Southgate D.A.T. Determination of food carbohydrates, Elsevier, 1991, 241 p.

Banerjee P.N., Bhatt S. Natural Product Research, 2007, vol. 6, pp. 507–521. DOI: 10.1080/14786410601130455.

De Freitas R.A., Busato A.P., Mitchell D.A., Silveira J.L.M. Carbohydrate Polymers, 2011, vol. 83, pp. 1636–1642. DOI: 10.1016/j.carbpol.2010.10.021.

Yu. L. Partial structural characterization of a pectin extracted from watermelon cell walls by mild alkali: diss. ... Mas-ter Chem. Hangzhou, 1986, 81 p.

Rodrigez-Carvajal M.A., Tejero-Mateo P., Espartero J.L., Ruiz-Sainz J.E., Buendia-Claveria A.M., Ollero F.J., Yang S.S., Gil-Serrano A.M. Biochem. J., 2001, vol. 357 (2), pp. 505–511. DOI: 10.1042/bj3570505.

Videcoq P., Barbacci A., Assor C., Magnenet V., Arnould O., Le Gall S., Lahaye M. Journal of Experimental Botany, 2017, vol. 18, pp. 5137–5146. DOI: 10.1093/jxb/erx329.

Basanta M.F., de Escalada Plá M.F., Stortz C.A., Rojas A.M. Carbohydrate Polymers, 2013, vol. 92, pp. 830–841. DOI: 10.1016/j.carbpol.2012.09.091.

Muramatsu N., Tanaka K., Asakura T., Haji T. J. Japan. Soc. Hort. Sci., 2004, vol. 73, pp. 534–540.

Rosik J., Kubala J., Kardosova A., Kovacik V. Chem. Zvesti., 1973, vol. 27, pp. 688–691.

Hegde S., Maness N.O. J. Amer. Soc. Hort. Sci., 1998, vol. 123, pp. 445–456.

Brummel D.A., Cin V.D., Crisosto C.H., Labavitch J.M. Journal of Experimental Botany, 2004, vol. 405, pp. 2029–2039. DOI: 10.1093/jxb/erh227.

Kan J., Liu J., Jin Ch.H. Journal of Horticultural Science & Biotechnology, 2013, vol. 88, pp. 37–46. DOI: 10.1080/14620316.2013.11512933.

Vigouroux J., Quémener B., Bonnin E., Lahaye M. Carbohydrate Polymers, 2014, vol. 108, pp. 46–57. DOI: 10.1016/j.carbpol.2014.03.017.

Lindberg B., Mosihuzzaman M., Nahar N., Abeysekera R.M., Brown R.G., Willison J.H.M. Carbohydrate Research, 1990, vol. 207, pp. 307–310.

Liu H.-M., Li Y.-R., Wu M., Yin H.-S., Wang X.-D. Industrial Crops & Products, 2018, vol. 111, pp. 615–624. DOI: 10.1016/j.indcrop.2017.11.035.

Andersson R., Hoffman J., Nahar N., Scholander E. Carbohydr. Res., 1990, vol. 206, pp. 340–346.

Ritzoulis C., Marini E., Aslanidou A., Georgiadis N., Karayannakidis P.D., Koukiotis Ch., Filotheou A., Lousinian S., Tzimpilis E. Food Hydrocolloids, 2014, vol. 42, pp. 178–186. DOI: 10.1016/j.foodhyd.2014.03.031.

Guo J., Guo X., Wang S., Yin Y. Carbohydr. Polym., 2016, vol. 135, pp. 248–255. DOI: 10.1016/j.carbpol.2015.08.068.

Vignon M.R., Gey C. Carbohydrate Research, 1998, vol. 307, pp. 107–111.

Carvalho M., Silva B.M., Silva R., Valentão P., Andrade P.B., Bastos M.L. Journal of Agricultural and Food Chemis-try, 2010, vol. 58, pp. 3366–3370. DOI: 10.1021/jf903836k.

Wang L., Liu H-M., Qin G-Y. Food Chemistry, 2017, vol. 234, pp. 314–322. DOI: 10.1016/j.foodchem.2017.05.002.

Debeire P., Priem B., Strecker G., Vignon M. Eur. J. Biochem., 1990, vol. 187, pp. 573–580. DOI: 10.1111/j.1432-1033.1990.tb15339.x.

Zdunek A., Kozioł A., Pieczywek P.M., Cybulska J. Food Bioprocess Technol., 2014, vol. 7, pp. 3525–3535. DOI: 10.1007/s11947-014-1365-z.

Eklof J.M., Brumer H. Plant Physiology, 2010, vol. 153, pp. 456–466. DOI: 10.1104/pp.110.156844.

Hirst E.L., Isherwood F.A., Jermyn M.A., Jones J.K.N. Journal of the Chemical Society, 1949, vol. 0, pp. 182–184.

Dong Y., Zhang Sh., Wang Y. Postharvest Biology and Technology, 2018, vol. 135, pp. 131–140. DOI: 10.1016/j.postharvbio.2017.09.010.

An, Iinhua. Ph. D. Thesis. Oklahoma State University, 1991.

Albersheim P., Darvill A., Roberts K., Sederoff R., Staehelin A. Plant Cell Walls, Garland Science, 2010, 430 p.

Chanda S.K., Hirst E.L., Percival E.G.V. Journal of the Chemical Society, 1951, pp. 1240–1246.

Pan T.-T., Pu H., Sun D.-W. Postharvest Biology and Technology, 2017, vol. 132, pp. 119–129. DOI: 10.1016/j.postharvbio.2017.05.012.

Brahem M. Caracterization of non-covalent interactions between cell wall and procyanidins during ripening of pears: Ph. D. thesis, Tech. Sciences and technics of agriculture. Université d’Avignon, 2017.

Chen P.M., Spotts R.A. Int. J. Fruit Sci., 2005, vol. 5, pp. 3–18. DOI: 10.1300/J492v05n03_02.

Chundawat S.P.S., Donohoe B.S., Sousa L.D., Elder T., Agarwal U.P., Lu F.C., Ralph J., Himmel M.E., Balan V., Dale B.E. Energy Environ. Sci., 2011, vol. 4, pp. 973–984. DOI: 10.1039/C0EE00574F.

Schols H.A., Vierhuis E., Bakx E.J., Voragen A.G.J. Carbohydr. Res., 1995, vol. 275, pp. 343–360. DOI: 10.1016/0008-6215(95)00155-M.

Ahmed A.E., Labavitch J.M. Plant Physiology, 1980, vol. 65, pp. 1009–1013. DOI: 10.1104/pp.65.5.1009.

Kosmala M., Kolodziejczyk K., Markowski J., Mieszczakowska M., Ginies Ch., Renard C.M.G.C. Food Science and Technology, 2010, vol. 43, pp. 173–180. DOI: 10.1016/j.lwt.2009.06.016.

Wawer I., Wolniak M., Paradowska K. Solid State Nuclear Magnetic Resonance, 2006, vol. 30, pp. 106–113. DOI: 10.1016/j.ssnmr.2006.05.001.

Cosgrove D.J., Jarvis M.C. Front Plant Sci., 2012, vol. 3, 204. DOI: 10.3389/fpls.2012.00204.

Krol B., Galazka-Czarnecka I., Grzelak K. Żywienie Człowieka i Metabolizm, 2005, vol. 32, pp. 214–221.

Szymanska-Charlot M., Chylinska M., Pieczywek P.M., Rosch P., Shmitt M., Popp J., Zdunek A. Planta, 2016, vol. 243, pp. 935–945. DOI: 10.1007/s00425-015-2456-4.

Walia M., Sharma U., Bhushan Sh., Kumar N., Singh B. Chemistry of Natural Compounds, 2013, vol. 5.

Vendruscolo F., Albuquerque P.M., Streit F., Esposito E., Ninow J.L. Crit. Rev. Biotechnol., 2008, vol. 28, pp. 1–12. DOI: 10.1080/07388550801913840.

Hilz H. Characterisation of Cell Wall Polysaccharides in Bilberries and Black Currants: Ph.D. thesis, Chem. The Netherlands, Wageningen University, 2007, 158 p.

Vidal S., Williams P., O'Neill M.A., Pellerin P. Carbohydr. Polym., 2001, vol. 45, pp. 315–323. DOI: 10.1016/S0144-8617(00)00285-X.

Hilz H., Bakx E.J., Schols H.A., Voragen A.G.J. Carbohydrate Polymers, 2005, vol. 59, pp. 477–488. DOI: 10.1016/j.carbpol.2004.11.002.

Hilz H., de Jong L.E., Kabel M.A., Schols H.A., Voragen A.G.J. Journal of Chromatography A, 2006, vol. 1133, pp. 275–286. DOI: 10.1016/j.chroma.2006.08.024.

Alvarez E.E., Sanchez P.G. Nutritión Hospitalaria, 2004, vol. 21, pp. 60–71.

Ishii T., Matsunaga T. Phytochemistry, 2001, vol. 57, pp. 674–696.

Jenkins D.J.A., Marchie A., Augustin M., Ros E., Kendall C.W.C. Clinical Nutrition Supplements, 2004, vol. 1, pp. 39–49. DOI: 10.1016/j.clnu.2004.09.007.

Bagger-Jorgensen R., Meyer A.S. European Food Research and Technology, 2004, vol. 219, pp. 620–629. DOI: 10.1007/s00217-004-1006-2.

Lahaye M., Falourd X., Quemener B., Ralet M.Ch., Howard W., Dirlewanger E., Arú P. Journal of Agricultural and Food Chemistry, 2012, vol. 60, pp. 6594–6605. DOI: 10.1021/jf301494j.

Cornuault V., Pose S., Knox J.P. Data in Brief, 2018, vol. 17, pp. 314–320. DOI: 10.1016/j.foodchem.2017.11.025.

Abo-Donia F.M. Egyptian J. Nutrition and Feeds, 2008, vol. 11, pp. 511–522.

Barry J.H., Selvendran S. J. Sci. Food Agric., 1980, vol. 31, pp. 1257–1267.

Timbault J.-F., Renard C.M.G.C., Guillon F. Modern Methods of Plant Analysis, 1985, vol. 16, p. 33.

Zykwinska A., Rondeau-Mouro C., Garnier C., Thibault J.-F., Marie-Christine Ralet M.-Ch. Carbohydrate Polymers, 2005, vol. 65, pp. 510–520. DOI: 10.1016/j.carbpol.2006.02.012.

Wang L., Liu F., Wang A., Yu Z., Xu Y., Yang Y. Food Hydrocolloids, 2016, pp. 1–8. DOI: 10.1016/j.foodhyd.2016.12.003.

Smith B.G., Harris P.J., Melton L.D., Newman R.H. Physiol. Plant., 1998, vol. 103, pp. 233–246.

Yasufuku H., Azuma J.-I., Kido Sh., Koshijima T. Agric. Biol. Chem., 1985, vol. 49, pp. 3429–3435.

Jolie R.P., Fraeye I., Van Loey A.M., Hendrickx M.E. Carbohydrate Research, 2011, vol. 346, pp. 1105–1111. DOI: 10.1016/j.carres.2011.04.014.

Faeghe J., Faramarz K., Hossein K., Saeid H.S. Carbohydrate Polymers, 2017, vol. 157, pp. 1315–1322. DOI: 10.1016/j.carbpol.2016.11.013.

Massiot P., Rouau X., Thibault J.-F. Carbohydrate Research, 1988, vol. 172, pp. 229–242.

Broxterman S.E., Picouet P., Schols H.A. Carbohydrate Polymers, 2017, vol. 177, pp. 58–66. DOI: 10.1016/j.carbpol.2017.08.118.

Ornelas-Paz J.J., Ruiz-Cruz S., Zamudio-Flores P.B., Cervantes-Paz B., Gardea-Béjar A.A., Pérez-Martínez J.D., Ibar-ra-Junquera V., Reyes-Hernández J. Carbohydrate Polymers, 2015, vol. 115, pp. 112–121. DOI: 10.1016/j.carbpol.2014.08.062.

Norulfairuz D., Zaidel A. Kinetics of Enzyme-catalyzed Cross-linking of Feruloylated Arabinan Oligosaccharides from Sugar Beet. Graduate Schools Yearbook, 2011.

Bertin Ch., Rouau X., Thibault J.-F. J. Sci. Food Agric., 1988, vol. 44, pp. 15–29.

Catherine M.G.C., Jarvis R. Plant Physiology, 1999, vol. 119, pp. 1315–1322.

Kacurakova M., Capek P., Sasinkova V., Wellner N., Ebringerova A. Carbohydrate Polymers, 2000, vol. 43, pp. 195–203.

Levigne S.V., Ralet M.-Ch.J., Quéméner B.C., Pollet B.N.-L., Lapierre C., Jean-François J., Thibault J.-F.J. Plant Physiology, 2004, pp. 1173–1180. DOI: 10.1104/pp.103.035311.

Westphal Y., Kühnel S., de Waard P., Hinz S.W.A., Schols H.A., Voragen A.G.J. Carbohydrate Research, 2010, vol. 345, pp. 1180–1189.

Colquhoun I.J., Ralet M.-Ch., Faulds J.-F.C.B., Williamson G. Carbohydrate Research, 1994, vol. 263, pp. 243–256.

Sun R., Hughes S. Carbohydrate Polymers, 1998, vol. 36, pp. 293–299.

Sun R., Hughes S. Carbohydrate Polymers, 1999, vol. 38, pp. 273–281.

Villanueva M.J., Rodriguez M.D. Journal of Chromatography A, 1994, vol. 677, pp. 273–278.

Vitol I.S., Igoryanova N.A., Meleshkina E.P. Food systems, 2019, vol. 2(4), pp. 18–24. DOI: 10.21323/2618-9771-2019-2-4-18-24.

Published
2022-03-10
How to Cite
1. Tsareva M. A. ON THE FRUIT AND VEGETABLES PLANT CELL WALL HEMICELLULOSE COMPOUND STRUCTURE // chemistry of plant raw material, 2022. № 1. P. 35-52. URL: http://journal.asu.ru/cw/article/view/9366.
Section
Reviews