CHARACTERISTICS OF THE REDOX STATE OF THE LIGNIN-CARBOHYDRATE WOOD MATRIX AT THE INITIAL STAGES OF DEVELOPMENT ON THE EXAMPLE OF SCOTS PINE

UDC 582.475, 543.421, 54.061

  • Mariya Arkad'yevna Gusakova N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences Email: mariya_gusakova@mail.ru
  • Konstantin Grigor'yevich Bogolitsyn N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences; Northern (Arctic) Federal University named after M.V. Lomonosov Email: k.bogolitsin@narfu.ru
  • Anna Alekseyevna Krasikova N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences Email: ann.krasikova@gmail.com
  • Nataliya Vladimirovna Selivanova N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences Email: snatalia-arh@yandex.ru
  • Sergey Sergeyevich Khviuzov N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences Email: khviyuzov.s@yandex.ru
Keywords: redox processes, cell wall, scots pine, phenolic compounds, enzymatic activity

Abstract

The studies of wood formation at the initial stages allowed confirming the determining role of the redox transformations of monolignols in the lignification of plant matrix. The change in the composition of the phenolic fraction (conjugated and non-conjugated phenolic structures) of the phenol-quinone redox system of the cell wall was studied using the derivative and differential UV spectroscopy. It was shown that the accumulation of low-molecular phenolic compounds in the initial period of ontogenesis occurs mainly in the "needles" of plants. It was confirmed that the seedlings being removed to the hardening site adapt to the existing temperature regime. It is characterized by lower content of low-molecular phenolic compounds preventing the development of oxidative processes. The plant is exposed to oxidative stress at low temperatures, when the enzymatic (peroxidase activity) system of plant protection is activated. The change in the coniferyl alcohol content as a marker of the lignification is shown. The correlation of changes in peroxidase activity with the total content of phenolic compounds and coniferyl alcohol was shown. The IR spectroscopy method showed a change in the ratio of carbohydrate and lignin components at the initial stages of the development of seedlings of scots pine.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Mariya Arkad'yevna Gusakova, N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

кандидат технических наук, ведущий научный сотрудник лаборатории химии растительных биополимеров

Konstantin Grigor'yevich Bogolitsyn, N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences; Northern (Arctic) Federal University named after M.V. Lomonosov

доктор химических наук, профессор, главный научный сотрудник лаборатории химии растительных биополимеров

Anna Alekseyevna Krasikova, N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

кандидат химических наук, научный сотрудник лаборатории химии растительных биополимеров

Nataliya Vladimirovna Selivanova, N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

кандидат химических наук, старший научный сотрудник лаборатории химии растительных биополимеров

Sergey Sergeyevich Khviuzov, N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

кандидат химических наук, старший научный сотрудник лаборатории химии растительных биополимеров

References

Bogolitsyn K.G., Lunin V.V., Kosyakov D.S., Karmanov A.P., Skrebets T.E., Popova N.R., Malkov A.V., Gor-bova N.S., Pryakhin A.N., Shkayev A.N., Ivanchenko N.L. Fizicheskaya khimiya lignina. [Physical chemistry of lig-nin]. Moscow, 2010, 492 p. (in Russ.).

Fuksman I.L., Novitskaya L.L., Isidorov V.A., Roshchin V.I. Lesovedeniye, 2005, no. 3, pp. 4–10. (in Russ.).

Freudenberg K. The constitution and biosynthesis of Lignin. Molecular biology, biochemistry and biophysics, New York, 1968, pp. 47–122.

Sakakibara A. Recent advances in lignin biodegradation research, 1983, vol. 1, pp. 12–33.

Tobimatsu Y., Schuetz M. Current Opinion in Biotechnology, 2019, vol. 56, pp. 75–81. DOI: 10.1016/j.copbio.2018.10.001.

Deighton N., Richardson A., Stewart D., McDougall G.J. Holzforschung, 1999, vol. 53, pp. 503–510. DOI: 10.1515/HF.1999.083.

Bao W., O'Malley D.M., Whetten R., Sederoff R.R. Science, 1993, vol. 260, pp. 672–674. DOI: 10.1126/science.260.5108.672.

Sharova Ye.I., Medvedev S.S. Fiziologiya rasteniy, 2017, vol. 64, no. 1, pp. 3–18. DOI: 10.7868/S0015330317010146. (in Russ.).

Zhigunov A.V., Sokolov A.I., Kharitonov V.A. Vyrashchivaniye posadochnogo materiala s zakrytoy kornevoy siste-moy v Ust'yanskom teplichnom komplekse. Prakticheskiye rekomendatsii. [Growing planting material with a closed root system in the Ustyansk greenhouse complex. Practical recommendations]. Petrozavodsk, 2016, 43 p. (in Russ.).

Mattis G.Ya. Vestnik sel'skokhozyaystvennoy nauki, 1978, no. 11, pp. 109–114. (in Russ.).

Kozina L.V. Metabolizm fotoassimilyatov i peredvizheniye veshchestv u khvoynykh. [Metabolism of photoassimilates and movement of substances in conifers]. Vladivostok, 1995, 126 p. (in Russ.).

Nikolayeva T.N., Lapshin P.V., Zagoskina N.V. Khimiya rastitel'nogo syr'ya, 2021, no. 2, pp. 291–299. DOI: 10.14258/jcprm.2021028250. (in Russ.).

Bogolitsyn K.G., Surso M.V., Gusakova M.A., Zubov I.N. IVUZ. Lesnoy zhurnal, 2013, no. 6, pp. 91–96. (in Russ.).

Khviyuzov S.S., Bogolitsyn K.G., Gusakova M.A., Zubov I.N. Fundamental'nyye issledovaniya, 2015, no. 9, pp. 87–90. (in Russ.).

Vartanian E., Barres O., Roque C. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, vol. 136, pp. 1255–1259. DOI:10.1016/j.saa.2014.10.011.

Blansey A., Shutyy L. Fenol'nyye soyedineniya rastitel'nogo proiskhozhdeniya. [Phenolic compounds of plant origin]. Moscow, 1977, 297 p. (in Russ.).

Deng Y., Lu S. Critical Reviews in Plant Sciences, 2017, vol. 36, pp. 257–290. DOI: 10.1080/07352689.2017.1402852.

Muro-Villanueva F., Mao X., Chapple C. Current opinion in biotechnology, 2019, vol. 56, pp. 202–208. DOI: 10.1016/J.Copbio.2018.12.008.

Sudachkova N.Ye. Lesovedeniye, 1998, no. 2, pp. 3–9. (in Russ.).

Neugart S., Kläring H.P., Zietz M., Schreiner M., Rohn S., Kroh L.W., Krumbein A. Food Chemistry, 2012, vol. 133, pp. 1456–1465. DOI: 10.1016/j.foodchem.2012.02.034.

Sarkanen K.V., Lyudvig K.Kh. Ligniny (struktura, svoystva, reaktsii). [Lignins (structure, properties, reactions)]. Mos-cow, 1975, 632 p. (in Russ.).

Barros J., Serk H., Granlund I., Pesquet E. Annals of botany, 2015, vol. 7, pp. 1053–1074. DOI: 10.1093/aob/mcv046.

Andreyeva V.A. Ferment peroksidaza. Uchastiye v zashchitnom mekhanizme rasteniy. [Enzyme peroxidase. Participa-tion in the defense mechanism of plants]. Moscow, 1988, 127 p. (in Russ.).

Roitto M., Ahonen-Lonnarth U., Lamppi J., Huttunen S. European Journal of Forest Pathology, 1999, vol. 29, no. 6, pp. 399–410.

Shavnin S.A., Yusupov I.A., Marina N.V., Montile A.A., Golikov D.Yu. Fiziologiya rasteniy, 2021, vol. 68, no. 2, pp. 1–11. DOI: 10.31857/S0015330321020184. (in Russ.).

Published
2022-03-10
How to Cite
1. Gusakova M. A., Bogolitsyn K. G., Krasikova A. A., Selivanova N. V., Khviuzov S. S. CHARACTERISTICS OF THE REDOX STATE OF THE LIGNIN-CARBOHYDRATE WOOD MATRIX AT THE INITIAL STAGES OF DEVELOPMENT ON THE EXAMPLE OF SCOTS PINE // chemistry of plant raw material, 2022. № 1. P. 213-223. URL: http://journal.asu.ru/cw/article/view/9685.
Section
Low-molecular weight compounds