MAIN DIRECTIONS OF USE OF WASTE OF PLANT RAW MATERIALS (PEANUT SHELL) AS ADSORBENTS (RE-VIEW)
UDC 628.316.13
Abstract
Currently, one of the major and global problems is the treatment of wastewater from organic industrial waste, such as textile waste. The solution to this problem is the production of environmentally friendly adsorbents based on plant raw materials. The increasing use of natural resources, biomass recovery, and biomass waste in the past decade, has attracted the attention of an increasing number of scientists. Activated carbon (AC), used to remove organic micro-pollutants in the world's wastewater treatment plants, is typically produced from non-renewable resources such as peat, lignite, coal, anthracite, wood materials, waste from the paper industry, leather industry, and animal substances that must be transported over long distances. The use of local residual biomass as feedstock can be beneficial in terms of sustainability. The review is devoted to the analysis of publications in this area in recent years. The main areas of application of adsorbents based on peanut shells are considered. Examples of the implementation of the production of an adsorbent based on plant waste and their use for water purification from various chemicals are given, as well as the advantages of using a technology based on the adsorption of organic substances on activated carbon.
Downloads
Metrics
References
Aktivirovannyy ugol' na osnove mestnogo syr'ya budet vnedren v promyshlennost' Uzbekistana [Activated carbon based on local raw materials will be introduced into the industry of Uzbekistan]. URL: https://uzdaily.uz/ru/post/48702. (in Russ.).
Fatombi J.K., Idohou E.A., Osseni S.A. Fibers Polym., 2019, vol. 20, pp. 1820–1832. DOI: 10.1007/s12221-019-1107-y.
Kousha M., Tavakoli S., Daneshvar E., Vazirzadeh A., Bhatnagar A. Journal of Molecular Liquids, 2015, vol. 207, pp. 266–273. DOI: 10.1016/j.molliq.2015.03.046.
Steingruber E. Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2012, vol. 19, pp. 55–63.
Pishchevod Barretta [Barrett's Esophagus]. URL: https://ru.wikipedia.org/wiki/Пищевод_Барретта. (in Russ.).
Palma-Goyes R.E., Silva-Agredo J., González I., Torres-Palma R.A. Electrochimica Acta, 2014, vol. 140, pp. 427–433. DOI: 10.1016/j.electacta.2014.06.096.
Salah A., Ridha A., Flox C., Arias C., Brillas E. Environmental Chemistry Letters, 2006, vol. 4, pp. 229–233. DOI: 10.1007/s10311-006-0053-2.
Secula M.S., Creţescu I., Petrescu S. Desalination, 2011, vol. 277, no. 1–3, pp. 227–235. DOI: 10.1016/j.desal.2011.04.031.
Sokolova Yu.D. Universum: khimiya i biologiya: elektron. nauchn. zhurn., 2017, no. 2 (32). URL: https://7universum.com/ru/nature/archive/item/4279.
Khadhri N., Saad M.K., Elaloui E., Moussaoui Y. Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions. Springer International Publishing AG, 2018, pp. 1247–1248. DOI: 10.1007/978-3-319-70548-4_362.
Sánchez-Rodríguez S., Trujillo-Reyes J., Gutiérrez-Segura E., Solache M., Colin-cruz A. Separation Science and Technology, 2014, vol. 50, p. 1602. DOI: 10.1080/01496395.2014.986579.
Zhang J., Zhou Q., Ou L. Desalination and Water Treatment, 2014, vol. 57, no. 2, pp. 718–727. DOI: 10.1080/19443994.2014.967729.
Mittal A., Mittal J., Kurup L. J. Hazard Mater., 2006, vol. 137(1), pp. 591–602. DOI: 10.1016/j.jhazmat.2006.02.047.
Zhang J., Peng Z., Zhang S., Zhou Q. Separation Science and Technology, 2014, vol. 49, pp. 877–886. DOI: 10.1080/01496395.2013.863340.
Mbarki F., Kesraoui A., Seffen M., Ayrault P. Water, Air, & Soil Pollution, 2018, vol. 229, p. 95. DOI: 10.1007/s11270-018-3749-6.
Al-Qodah Z., Shawabkah R. Braz. J. Chem. Eng., 2009, vol. 26, pp. 127–136. DOI: 10.1590/S0104-66322009000100012.
Aljeboree A.M., Alshirifi A.N., Alkaim A.F. Arabian Journal of Chemistry, 2017, vol. 10, pp. S3381–S3393. DOI: 10.1016/j.arabjc.2014.01.020.
Khaled A., El Nemr A., El-Sikaily A., Abdelwahab O. Desalination, 2008, vol. 238, pp. 210–232. DOI: 10.1016/j.desal.2008.02.014.
dos Reis G.S., Larsson S.H., Thyrel M., Pham T.N., Claudio Lima E., de Oliveira H.P., Dotto G.L. Coatings, 2021, vol. 11, p. 772. DOI: 10.3390/coatings11070772.
Geçgel U., Üner O. Bulletin of the Chemical Society of Ethiopia, 2018, vol. 32, pp. 53–63. DOI: 10.4314/bcse.v32i1.5.
Shahraki Z.H., Sharififard H., Lashanizadegan A. Materials Research Express, 2018, vol. 5. DOI: 10.1088/2053-1591/aac1cd.
Kumari S., Rath P., Kumar A.S.H.., Tiwari T.N. Environmental Technology & Innovation, 2015, vol. 3, pp. 77–85. DOI: 10.1016/j.eti.2015.01.002.
Fu X., Wang H., Yu B., Xue J., Gao Y., Hu S., Wu T., Sun J. Environmental Science and Ecotechnology, 2020, vol. 2, 100028. DOI: 10.1016/j.ese.2020.100028.
Renu M.A., Singh K., Upadhyaya S., Dohare R.K. Materials Today: Proceedings, 2017, vol. 4, no. 9, pp. 10534–10538. DOI: 10.1016/j.matpr.2017.06.415.
Malakootian M., Faraji M., Malakootian M., Nozari M. Desalination and Water Treatment, 2021, vol. 222, pp. 1–32. DOI: 10.5004/dwt.2021.27334.
Karaer H., Kaya I. Microporous and Mesoporous Materials, 2016, vol. 232, pp. 26–38. DOI: 10.1016/j.micromeso.2016.06.006.
Yang J., Han Y., Sun Z., Zhao X., Chen F., Wu T., Jiang Y. ACS Omega, 2021, vol. 6, pp. 15885–15891. DOI: 10.1021/acsomega.1c01444.
Guo Y., Rockstraw D. Microporous and Mesoporous Materials, 2007, vol. 100, pp. 12–19. DOI: 10.1016/j.micromeso.2006.10.006.
El Knidri H., El Khalfaouy R., Laajeb A., Addaou A., Lahsini A. Process Saf. Environ. Prot., 2016, vol. 104, p. 395. DOI: 10.1016/j.psep.2016.09.020.
Xie J., Xie W., Yu J., Xin R., Shi Z., Song L., Yang X. Front Microbiol., 2021, vol. 12, 677126. DOI: 10.3389/fmicb.2021.677126.
Brugnerotto J., Lizardi J., Goycoolea F.M., Argüelles-Monal W., Desbrières J., Rinaudo M. Polymer, 2001, vol. 42, no. 8, pp. 3569–3580. DOI: 10.1016/S0032-3861(00)00713-8h.
Lawal I.A., Chetty D., Akpotu S.O., Moodley B. Environmental Nanotechnology, Monitoring & Management, 2017, vol. 8, pp. 83–91. DOI: 10.1016/j.enmm.2017.05.003.
Gautam A.K., Markandeya, Singh N.B., Shukla S.P., Mohan D. SN Applied Sciences, 2020, vol. 2, article 288. DOI: 10.1007/s42452-020-2065-0.
Kumani M.V., Solov'yeva Yu.A., Kornilov A.G. Nauchnyye vedomosti. Seriya Yestestvennyye nauki, 2011, no. 15 (110), pp. 193–198. (in Russ.).
Resheniye global'noy problemy fosfora obespechit prodovol'stvennuyu bezopasnost' i snizit zagryazneniye [Solving the global phosphorus problem will ensure food security and reduce pollution]. URL: https://www.unep.org/ru/novosti-i-istorii/istoriya/reshenie-globalnoy-problemy-fosfora-obespechit-prodovolstvennuyu. (in Russ.).
da Gama B.M.V., do Nascimento G.E., Sales D.C.S., Rodríguez-Díaz J.M., de Barbosa C.M.B.M., Duarte M.M.M.B. Journal of Cleaner Production, 2018, vol. 201, pp. 219–228.
Nkansah M.A., Donkoh M., Akoto O., Ephraim J.H. Emerging Science Journal, 2019, vol. 3(1), pp. 33–40. DOI: 10.28991/esj-2019-01166.
Avinash P., Kumar M. Indian Journal of Occupational and Environmental Medicine, 2012, vol. 16, no. 1, p. 40. DOI: 10.4103/0019-5278.99696.
Gray N.F. An introduction for environmental scientists and engineers // Water Technology. 2010. Pp. 727–747.
Ramakrishnaiah C.R., Vismitha. Removal of Phosphate from Waste Water Using Low-Cost Adsorbents // International Journal of Engineering Inventions. 2012. Vol. 1. Pp. 44–50.
Clinton S.C., Pratt K.M.E. Station. Phosphorus effects on surface water quality and phosphorus TMDL development // In Western nutrient management conference. 2003. Vol. 5. N21. P. 1.
Ramakrishnaiah C.R. International Journal of Engineering Inventions, 2012, vol. 1, no. 7, pp. 44–50.
Sunil B.M., Faziludeen S. Advances in Environmental Research, 2015, vol. 4, no. 3, pp. 197–210. DOI: 10.12989/aer.2015.4.3.197.
Patil Mansing R., Raut P.D. International Journal of Engineering Research & Technology (IJERT), 2013, vol. 2, pp. 551–559.
Rout P.R., Puspendu B., Dash R.R. Desalination and Water Treatment, 2015, vol. 54, pp. 358–373. DOI: 10.1080/19443994.2014.881752.
Yang Y.J., Haught R.C., Goodrich J.A. Journal of Environmental Management, 2009, vol. 90, pp. 2494–2506. DOI: 10.1016/j.jenvman.2009.01.021.
Freundlich H.M.F. J. Phys. Chem., 1906, vol. 57, pp. 1100–1107.
Langmuir I. J. Am. Chem. Soc., 1916, vol. 38, p. 2267.
Xiang H., Liu C., Pan R., Han Y., Cao J. Advances in Environmental Research, 2014, vol. 3, pp. 163–172. DOI: 10.12989/aer.2014.3.2.163.
Gautam R.K., Banerjee S., Gautam P.K., Chattopadhyaya M.C. Adv. Environ. Res., 2014, vol. 36, pp. 177–200.
Eaton A.D., Clesceri L.S., Rice E.W., Greenberg A.E., Franson M.H. Standard Methods for the Examination of Water and Wastewater: 21st ed. American Public Health Association: Washington, DC, Water Environment Federation: Al-exandria, VA, and American Water Works Association: Denver, CO, 2005.
Karabaeva M.I., Tursunaliyeva M.S. The study of the ash-content of activated carbons based on vegetable raw materials // Asian Journal Of Multidimensional Research. 2021. Vol. 10, issue 6. Pp. 143–145. DOI: 10.5958/2278-4853.2021.00518.8.
Yu H., Wang J., Yu J.X., Wang Y., Chi R. Environmental Science and Pollution Research, 2020, vol. 27(21), pp. 26502–26510. DOI: 10.1007/s11356-020-09055-x.
Mışyak [Arsenic]. URL: https://www.who.int/ru/news-room/fact-sheets/detail/arsenic. (in Russ.).
Sattar M.S., Shakoor M.B., Ali S., Rizwan M., Niazi N.K., Jilani A. Environmental Science and Pollution Research, 2019, vol. 26(18), pp. 18624–18635. DOI: 10.1007/s11356-019-05185-z.
Pan B., Wang Y., Li H., Yi W., Pan Y. International Journal of Electrochemical Science, 2020, vol. 15(2), pp. 1861–1880. DOI: 10.20964/2019.12.74.
Ilyas M., Ahmad A., Saeed M. Journal of the Chemical Society of Pakistan, 2013, vol. 35(3), pp. 760–768.
Dakiky M., Khamis M., Manassra A. Advanced Environmental Research, 2002, vol. 6, p. 533.
Anandkumar J., Mandal B. Journal of Hazardous Material, 2011, vol. 186, p. 1088. DOI: 10.1016/j.jhazmat.2010.11.104.
Vinodhini V., Nilanjana D. Research Journal of Agriculture and Biological Sciences, 2009, vol. 4, p. 19.
Rane N.M. International Journal of Chemical Sciences and Applications, 2010, vol. 1–2, pp. 65–69.
Bhattacharya A.K., Naiya T.K., Mandal S.N. Chemical Engineering Journal, 2008, vol. 137, p. 529. DOI: 10.1016/j.cej.2007.05.021.
Sahranavard M., Ahmadpour A., Doosti M.R. European Journal of Scientific Research, 2011, vol. 58, p. 392.
Rehman R., Anwar J., Mahmud T. Journal of the Chemical Society of Pakistan, 2011, vol. 33, p. 846.
Gholipour M., Hashemipour H., Mollashahi M. Journal of Engineering and Applied Science, 2011, vol. 6, p. 10.
Dubey S.P., Gopal K. Journal of Hazardous Materials, 2007, vol. 145, p. 465.
Selvi K., Pattabhi S., Kadirvelu K. Bioresour Technol., 2001, vol. 80(1), pp. 87–89. DOI: 10.1016/s0960-8524(01)00068-2.
Zakharova V.I., Ignat V.O., Korenevskii A.A. Applied Biochemistry and Microbiology, 2011, vol. 37, p. 348.
Karabaeva M.I. ACADEMICIA: An International Multidisciplinary Research Journal, 2020, vol. 10(11), pp. 442–445.
Pattnaik P., Dangayach G.S. Water, Air, Soil Pollut., 2019, vol. 230, p. 156. DOI: 10.1007/s11270-019-4206-x.
Deng C., Liu J., Zhou W., Zhang Y.K., Du K.F., Zhao Z.M. Chem. Eng. J., 2012, vol. 200–202, pp. 452–458. DOI: 10.1016/j.cej.2012.06.059.
Russo V., Masiello D., Trifuoggi M., Di Serio M., Tesser R. Chem. Eng. J., 2016, vol. 302, pp. 287–295. DOI: 10.1016/j.cej.2016.05.020.
He X., Male K.B., Nesterenko P.N., Brabazon D., Paull B., Luong J.H.T. ACS Appl. Mater. Interfaces, 2013, vol. 5, pp. 8796–8804. DOI: 10.1021/am403222u.
Liu Y., Wang J., Zheng Y., Wang A. Chem. Eng. J., 2012, vol. 184, pp. 248–255. DOI: 10.1016/j.cej.2012.01.049.
He Y., Li G., Wang H., Zhao J., Su H., Huang Q. J. Membr. Sci., 2008, vol. 321, pp. 183–189. DOI: 10.1016/j.memsci.2008.04.056.
de Oliveira G.R., Fernandes N.S., de Melo J.V., da Silva D.R., Urgeghe C., Martínez-Huitle C.A. Chem. Eng. J., 2011, vol. 168, pp. 208–214. DOI: 10.1016/j.cej.2010.12.070.
Deng S., Xu H., Jiang X., Yin J. Macromolecules, 2013, vol. 46, pp. 2399–2406. DOI: 10.1021/ma302330w.
Zhang Y.R., Shen S.L., Wang S.Q., Huang J., Su P., Wang Q.R., Zhao B.X. Chem. Eng. J., 2014, vol. 239, pp. 250–256. DOI: 10.1016/j.cej.2013.11.022.
Zhang G., Shi L., Zhang Y., Wei D., Yan T., Wei Q., Du B. RSC. Adv., 2015, vol. 5, pp. 25279–25286. DOI: 10.1039/c4ra15216f.
Cheng J., Zhan C., Wu J., Cui Z., Si J., Wang Q., Peng X., Turng L.-S. CS Omega, 2020, vol. 5, pp. 5389–5400. DOI: 10.1021/acsomega.9b04425.
Nurhasni M., Si N., Mar’af R., Hendrawati H. Jurnal Kimia VALENSI, 2018, vol. 4(2), pp. 156–167. DOI: 10.15408/jkv.v4i2.8895.
Copyright (c) 2022 chemistry of plant raw material
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.