Исследование эффективности различных методов машинного обучения
Abstract
Целью данной исследовательской работы является исследование эффективности различных методов машинного обучения. В данной работе будут проанализированы и будет проведено сравнение нескольких широко используемых методов, включая линейную регрессию, PolynomialFeatures, метод градиентного бустинга, метод случайного леса.
References
Мюллер А., Гвидо С. Введение в машинное обучение с помощью Python. — М.: Диалектика, 2017. — 472 с.
Bishop C.M. Pattern Recognition and Machine Learning. – NY: Springer, 2006.
Жерон О. Прикладное машинное обучение с помощью Scikit-Learn, Keras и TensorFlow. Концепции, инструменты : Пер. с англ. — М. : Диалектика, 2020. — 1040 с.
1. Авторы сохраняют за собой права на авторство своей работы и предоставляют журналу право первой публикации этой работы с правом после публикации распространять работу на условиях лицензии Creative Commons Attribution License, которая позволяет другим лицам свободно распространять опубликованную работу с обязательной ссылокой на авторов оригинальной работы и оригинальную публикацию в этом журнале.
2. Авторы сохраняют право заключать отдельные договора на неэксклюзивное распространение работы в том виде, в котором она была опубликована этим журналом (например, размещать работу в электронном архиве учреждения или публиковать в составе монографии), с условием сохраниения ссылки на оригинальную публикацию в этом журнале. с. Политика журнала разрешает и поощряет размещение авторами в сети Интернет (например в институтском хранилище или на персональном сайте) рукописи работы как до ее подачи в редакцию, так и во время ее редакционной обработки, так как это способствует продуктивной научной дискуссии и положительно сказывается на оперативности и динамике цитирования статьи