COMPARATIVE ANALYSIS OF MINERAL COMPOSITION IN PLANTS OF GENUS HEMEROCALLIS L. GROWING IN URBANIZED ENVIRONMENT

UDC 581.192:582.573.76

  • Irina Sergeevna Pyatina South-Ural Botanical Garden-Institute – a separate structural unit of the UFRC RAS Email: katakena@mail.ru
  • Antonina Anatolyevna Reut South-Ural Botanical Garden-Institute – a separate structural unit of the UFRC Email: cvetok.79@mail.ru
  • Svetlana Razifovna Afonkina Ufa Research Institute of Occupational Health and Human Ecology Email: svetafonk1@mai.ru
  • Luiza Minibulatovna Mryasova SBI RB "State Analytical Control Department" Email: luizaai29@mail.ru
  • Elvira Rifovna Shakurova Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences Email: shakurovaer@mail.ru
  • Lyudmila Vyacheslavovna Parfenova Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences Email: luda_parfenova@mail.ru
Ключевые слова: еdible plants, Hemerocallis L., plant juice, mineral element composition, heavy metals, atomic-absorption spectroscopy

Аннотация

The quality and quantity of elements of the mineral composition of a plant directly affects the nature of the physiological effect on the human body, using this plant for food or as a medicine. The ability of plants to form the mineral composition in a certain way in an urbanized environment may be one of the reasons for the risk of using these plants for the human and animal organisms in view of their possible contamination with toxic substances. Ornamental flower plants of the genus Hemerocallis L. growing in Europe, North America, Russia and in the countries of Southeast Asia have been used in folk medicine since ancient times, and flowers and buds are eaten. The purpose of this study was to determine and compare the content of heavy metals in 14 taxon of the genus Hemerocallis L. The elemental composition of roots and leaves in dried plant raw materials, of the juice and the collection site soil was studied by atomic adsorption spectrometry. The order of decrease of the studied metals in underground and aboveground organs is established as follows: Cu˃Mn˃Ni˃Pb˃Fe˃Cr˃As˃Cd. It was noted that the average content of heavy metals Pb, Cd and Mn is higher in plant leaves. The average content of As, Cr, Fe, Cu and Ni prevailed in the roots of plants. Species- and variety-specific accumulation of heavy elements in the leaves and roots of the studied daylily taxon was noted.

Скачивания

Данные скачивания пока недоступны.

Metrics

Загрузка метрик ...

Биографии авторов

Irina Sergeevna Pyatina , South-Ural Botanical Garden-Institute – a separate structural unit of the UFRC RAS

1st category engineer

Antonina Anatolyevna Reut , South-Ural Botanical Garden-Institute – a separate structural unit of the UFRC

candidate of biological sciences, leading researcher

Svetlana Razifovna Afonkina , Ufa Research Institute of Occupational Health and Human Ecology

candidate of chemical sciences, senior researcher

Luiza Minibulatovna Mryasova , SBI RB "State Analytical Control Department"

candidate of chemical sciences, leading engineer

Elvira Rifovna Shakurova , Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences

candidate of chemical sciences, researcher

Lyudmila Vyacheslavovna Parfenova, Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences

doctor of chemical sciences, associate professor, head of laboratory

Литература

Younis K., Ahmad S., Badpa A. Food Process Technol, 2015, vol. 6, 1000434. https://doi.org/10.4172/2157-7110.1000434.

Rop O., Mlcek J., Jurikova T., Neugebauerova J., Vabkova J. Molecules, 2012, vol. 17, pp. 6672–6683. https://doi.org/10.3390/molecules17066672.

Grzeszczuk M., Meller E., Stefaniak A., Wysocka G. Elementol., 2018, vol. 23, pp. 151–162. https://doi.org/10.5601/jelem.2017.22.2.1352.

Hanc A., Komorowicz I., Iskra M., Majewski W., Barałkiewicz D. Anal. Bioanal. Chem., 2011, vol. 399, pp. 3221–3231. https://doi.org/10.1007/s00216-011-4729-5.

Jarosz M., Olbert M., Wyszogrodzka G., Mlyniec K., Librowski T. Inflammopharmacology, 2017, vol. 25, pp. 11–24. https://doi.org/10.1007/s10787-017-0309-4.

Gombart A., Pierre A., Maggini S. Nutrients, 2020, vol. 12, 236. https://doi.org/10.3390/nu12010236.

Lajayer B., Ghorbanpour M., Nikabadi S. Ecotoxicol. Environ. Saf., 2017, vol. 145, pp. 377–390. https://doi.org/10.1016/j.ecoenv.2017.07.035.

Karahan F., Ozyigit I.I., Saracoglu I.A., Yalcin I.E., Ozyigit A.H., Ilcim A. Biol. Trace. Elem. Res., 2020, vol. 197, pp. 316–329. https://doi.org/10.1007/s12011-019-01974-2.

Afonne O.J., Ifediba E.C. Curr. Opin. Toxicol., 2020, vol. 22, pp. 1–6. https://doi.org/10.1016/j.cotox.2019.12.006.

Zhang S.B., Zhang J.L., Slik J.W.F., Cao K.F. Glob. Ecol. Biogeogr., 2012, vol. 21, no.8, pp. 809–818. https://doi.org/10.1111/j.1466-8238.2011.00729.x.

Zhang Y., Cichewicz R.H., Nair M.G. Life Sci., 2004, vol. 75, no. 6, pp. 753–763. https://doi.org/10.1016/j.lfs.2004.03.002.

Kao F.J., Chiang W.D., Liu H.M. Food Sci. Technol., 2015, vol. 61, no. 1, pp. 130–137. https://doi.org/10.1016/j.lwt.2014.11.023.

Hsu Y.W., Tsai C.F., Chen W.K., Ho Y.C., Lu F.J. Food Chem., 2011, vol. 129, no. 4, pp. 1813–1818. https://doi.org/10.1016/j.foodchem.2011.05.116.

Mlcek J., Plaskova A., Jurikova T., Sochor J., Baron M., Ercisli S. Foods, 2021, vol. 10, 2053. https://doi.org/10.3390/foods10092053.

Pyatina I.S., Bastamova R.I., Reut A.A., Safiullina L.M., Shakurova E.R. Vestnik Bashkirskogo universiteta, 2021, vol. 26, no. 4, pp. 944–949. https://doi.org/10.33184/bulletin-bsu-2021.4.14. (in Russ.).

Agbalyan E.V., Shinkaruk E.V., Popova T.L., Maksimenko Y.I. Nauchnyy vestnik Yamalo-Nenetskogo avtonomnogo okruga, 2019, vol. 3, pp. 35–45. https://doi.org/10.26110/ARCTIC.2019.104.3.007. (in Russ.).

Polyanskaya I.S. Molochnokhozyaystvennyy vestnik, 2014, vol. 1, pp. 34–42. (in Russ.).

GN 2.1.7.2041-06. Predel'no dopustimyye kontsentratsii (PDK) khimicheskikh veshchestv v pochve [GN 2.1.7.2041-06. Maximum permissible concentrations (MPC) of chemical substances in soil]. Moscow, 2006, 15 p. (in Russ.).

GOST R 53219-2008 (ISO 14255:1998). Kachestvo pochvy – opredeleniye nitratnogo azota, ammoniynogo azota i obshchego rastvorimogo azota v vozdushno-sukhikh pochvakh s ispol'zovaniyem rastvora khlorida kal'tsiya v kachestve ekstragenta. [GOST R 53219-2008 (ISO 14255:1998). Soil quality – determination of nitrate nitrogen, am-monium nitrogen and total soluble nitrogen in air-dry soils using calcium chloride solution as extractant]. Moscow, 2009, 15 p. (in Russ.).

GOST 26204-91. Pochvy. Opredeleniye podvizhnykh soyedineniy fosfora i kaliya metodom Chirikova v modifikatsii TsINAO. [GOST 26204-91. Soils. Determination of mobile compounds of phosphorus and potassium by Chirikov method in modification of CINAO]. Moscow, 1993, 8 p. (in Russ.).

GOST 26487-85. Pochvy. Opredeleniye obmennogo kal'tsiya i obmennogo (podvizhnogo) magniya metodami TsINAO. [GOST 26487-85. Soils. Determination of exchangeable calcium and exchangeable (mobile) magnesium by CINAO methods]. Moscow, 1986, 14 p. (in Russ.).

MUK 4.1.986-00. Metodika vypolneniya izmereniy massovoy doli svintsa i kadmiya v pishchevykh produktakh i prodo-vol'stvennom syr'ye metodom elektrotermicheskoy atomno-absorbtsionnoy spektrometrii. [MUK 4.1.986-00. Method-ology for measuring the mass fraction of lead and cadmium in food products and food raw materials using electrother-mal atomic absorption spectrometry]. Moscow, 2000, 32 p. (in Russ.).

GOST R 51766-2001. Syr'ye i produkty pishchevyye. Atomno-absorbtsionnyy metod opredeleniya mysh'yaka. [GOST R 51766-2001. Raw material and food-stuffs. Atomic absorption method for determination of arsenic]. Мoscow, 2011, 12 p. (in Russ.).

MU №01-19/47-11. Atomno-adsorbtsionnyye metody opredeleniya toksichnykh elementov v pishchevykh produktakh i pishchevom syr'ye. [MU №01-19/47-11. Atomic adsorption methods for determining toxic elements in food products and food raw materials]. Moscow, 1992, 27 p. (in Russ.).

GOST 30178-96. Syr'ye i produkty pishchevyye. Atomno-absorbtsionnyy metod opredeleniya toksichnykh elementov. [GOST 30178-96. Raw material and food-stuffs. Atomic absorption spectrometric method of determination of toxic el-ements]. Moscow, 2010, 10 p. (in Russ.).

Lima E.C., Nardi L.V.S., Pereira V.P., Neto A.C., Vedana L.A. Rev. do Inst. Geol., 2014, vol. 35, no. 1, pp. 19–29. https://doi.org/10.5935/0100-929X.20140002.

Mineev V.G. Praktikum po agrokhimii. [Workshop on agrochemistry]. Moscow, 2001, 689 p. (in Russ.).

Gosudarstvennaya Farmakopeya RF, XIV izd. [State Pharmacopoeia of the Russian Federation, XIV ed.]. Moscow, 2018. URL: http://www.femb.ru/feml. (in Russ.).

WHO guidelines for assessing quality of herbal medicines with reference to contaminants and residues. Geneva: World Health Oganization, 2007.

TR CU 021/2011. Technical Regulations of the Customs Union «On food safety», 2011, 156 p.

WHO guidelines for drinking-water quality. Geneva: World Health Organization, 2011.

Off. J. Eur. Union, 2011, vol. 54, pp. 18–63.

Kabata-Pendias A., Pendias Н. Trace elements in soils and plants. Boca Raton: CRC Press, 2001, 315 p.

Kovalevsky A.L., Kovalevskaya O.M. Appl. Geochemistry, 1989, vol. 4, pp. 369–374. https://doi.org/10.1016/0883-2927(89)90013-9.

Опубликован
2025-06-05
Как цитировать
1. Pyatina I. S., Reut A. A., Afonkina S. R., Mryasova L. M., Shakurova E. R., Parfenova L. V. COMPARATIVE ANALYSIS OF MINERAL COMPOSITION IN PLANTS OF GENUS HEMEROCALLIS L. GROWING IN URBANIZED ENVIRONMENT // Химия растительного сырья, 2025. № 2. С. 198-206. URL: https://journal.asu.ru/cw/article/view/14638.
Выпуск
Раздел
Низкомолекулярные соединения