PHYSICOCHEMICAL STUDY OF CEDAR BARK ETHANOL LIGNIN

UDC 54-16, 67.08

  • Alexander Sergeevich Kazachenko Reshetnev Siberian State University of Science and Technology, Siberian Federal University,Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Healthcare of the Russian Federation Email: leo_lion_leo@mail.ru
  • Yuri Nikolaevich Maliar Siberian Federal University, Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences Email: yumalyar@gmail.com
  • Alexandr Vladimirovich Levdansky Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences Email: alexsander.l@mail.ru
  • Olga Yurievna Fetisova Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences Email: fou1978@mail.ru
  • Vladislav Alexandrovich Ionin Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Healthcare of the Russian Federation Email: ionin.va@icct.krasn.ru
Ключевые слова: ethanol lignin, cedar bark, FTIR, NMR, GPC

Аннотация

This study presents the results of a comprehensive physicochemical study of ethanol lignin isolated from Siberian cedar bark performed under subcritical (190 °C, 60% ethanol) and supercritical (250 °C, 96% ethanol) processing conditions. The aim of the work was to study the effect of temperature and extraction conditions on the structural, molecular and thermal properties of lignin. The intrinsic structure properties of the isolated lignin was investigated by modern physico-chemical analysis methods, including IR spectroscopy, NMR spectroscopy, gel permeation chromatography (GPC) and thermogravimetric analysis (TGA). The registered IR-spectra revealed significant changes in the lignin structure obtained with higher processing temperature. In particular, an increase in the intensity of the absorption units associated with carboxyl groups (1706 cm-1) was observed, indicating the oxidation of phenylpropane structures. The results registered by gel permeation chromatography, allowed to announce that the higher temperature of isolation leads to a shift in the molecular weight distribution towards higher molecular weights. Such results, obviously, connected with an intensification of the extraction of more complexed lignin structures. The polydispersity of the isolated samples also increases, indicating the heterogeneity of the lignin structure obtained at higher temperatures. The results of thermogravimetric analysis reveals that the main process of thermal decomposition of lignin occurs in the 150–500 °C temperature range. The ethanol lignin sample isolated at 250 °C characterized by higher thermal stability and a mass of coke residue at 700 °C in comparison to the sample isolated at 190 °C. This may be due to an increase in the molecular weight of the sample due to the condensation of fragments in the lignin structure, which makes it more resistant to thermal decomposition. The main structural units of lignin, including β-aryl ethers, pinoresinols, phenylcoumarans and guaiacyl units, were identified by 2D NMR HSQC spectroscopy. With increasing processing temperature, the destruction of β-aryl ether bonds and an increase in the number of condensed aromatic structures are observed, which confirms the condensation processes of lignin. This may be due to the homolytic decomposition of labile bonds with subsequent formation of more stable structures.

Скачивания

Данные скачивания пока недоступны.

Биографии авторов

Alexander Sergeevich Kazachenko , Reshetnev Siberian State University of Science and Technology, Siberian Federal University,Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Healthcare of the Russian Federation

Candidate of Chemical Sciences, Associate Professor of Fundamental Chemistry Department

Yuri Nikolaevich Maliar, Siberian Federal University, Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences

Candidate of Chemical Sciences, Senior Researcher

Alexandr Vladimirovich Levdansky, Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences

Candidate of Chemical Sciences, Researcher

Olga Yurievna Fetisova, Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences

Candidate of Chemical Sciences, Researcher

Vladislav Alexandrovich Ionin, Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Healthcare of the Russian Federation

Junior Researcher

Литература

Zhang Y., Naebe M. ACS Sustainable Chemistry & Engineering, 2021, vol. 9, no. 4, pp. 1427–1442. https://doi.org/10.1021/acssuschemeng.0c06998.

Karmanov A.P., Ermakova A.V., Raskosha O.V. et al. Russian Journal of Bioorganic Chemistry, 2024, vol. 50, pp. 2657–2674. https://doi.org/10.1134/S106816202407001X.

Fabbri F., Bischof S., Mayr S., Gritsch S., Jimenez Bartolome M., Schwaiger N., Guebitz G.M., Weiss R. Polymers, 2023, vol. 15, no. 7, 1694. https://doi.org/10.3390/polym15071694.

Yu O., Kim K.H. Applied Sciences, 2020, vol. 10, no. 13, 4626. https://doi.org/10.3390/app10134626.

Wang Q.-Y., Jia H.-B., Shang J. Journal of Forestry Research, 2005, vol. 16, no. 2, pp. 93–96.

Stashkevich N.Yu. Forestry Journal, 2015, no. 3, pp. 35–42.

Tiina A., Lantto H.J., Dorman D., Shikov A.N., Pozharitskaya O.N., Makarov V.G., Tikhonov V.P., Hiltunen R., Raasmaja A. Food Chemistry, 2009, vol. 112, no. 4, pp. 936–943.

Ionin V.A., Kazachenko A.S., Elsufiev E.V. Bulletin of Tomsk State University. Chemistry, 2021, no. 23.

Quesada-Medina J., Cremades F., Olivares Carrillo P. Bioresource Technology, 2010, vol. 101, pp. 8252–8260.

Zijlstra D.S., Lahive C.W., Analbers C.A., Figueirêdo M.B., Wang Z., Lancefield C.S., Deuss P.J. ACS Sustainable Chemistry & Engineering, 2020, vol. 8, no. 13, pp. 5119–5131. https://doi.org/10.1021/acssuschemeng.9b07222.

Zijlstra D.S., Analbers C.A., de Korte J., Wilbers E., Deuss P.J. Polymers, 2019, vol. 11, no. 12, 1913. https://doi.org/10.3390/polym11121913.

Bergrath J., Rumpf J., Burger R., Do X.T., Wirtz M., Schulze M. Macromolecular Materials and Engineering, 2023, vol. 308, no. 8, 2300093. https://doi.org/10.1002/mame.202300093.

Hiltunen E., Alvila L., Pakkanen T. Wood Science and Technology, 2006, vol. 40, pp. 575–584.

Wang Z., Deuss P.J. Biotechnology Advances, 2023, vol. 68, 108230.

Iqbal D.D., Nazir A., Iqbal M. et al. Green Processing and Synthesis, 2020, vol. 9, pp. 212–218.

Golubkov V., Borovkova V., Lutoshkin M. et al. Wood Science and Technology, 2024, vol. 58, pp. 1861–1879.

Sammons R.J., Harper D.P., Labbé N., Bozell J.J., Elder T., Rials T.G. BioResources, 2013, vol. 8, no. 2, pp. 2752–2767.

Larkin P. Infrared and Raman Spectroscopy; Principles and Spectral Interpretation. Elsevier, 2011.

Nurazzi N.M., Asyraf M.R.M., Rayung M., Norrrahim M.N.F., Shazleen S.S., Rani M.S.A., Shafi A.R., Aisyah H.A., Radzi M.H.M., Sabaruddin F.A. et al. Polymers, 2021, vol. 13, no. 16, 2710. https://doi.org/10.3390/polym13162710.

Fetisova O.Y., Mikova N.M., Chesnokov N.V. Kinetics and Catalysis, 2019, vol. 60, pp. 273–280. https://doi.org/10.1134/S0023158419030054.

Osovskaya I.I. et al. [Khitin-glyukanovyye kompleksy. Fiziko-khimicheskiye svoystva i molekulyarnyye kharakteristiki. Uchebnoye posobiye. Chitin-glucan complexes. Physicochemical properties and molecular characteristics. Study guide]. St. Petersburg, 2010, 52 p. (in Russ.).

Hansen B., Kusch P., Schulze M., Kamm B. Journal of Polymers and the Environment, 2016, vol. 24, no. 2, pp. 85–97. https://doi.org/10.1007/s10924-015-0746-3.

Wittkowski R., Ruther J., Drinda H., Rafiei-Taghanaki F. Formation of smoke flavor compounds by thermal lignin degradation. ACS symposium series, Washington, DC, 1992, pp. 232–490. https://doi.org/10.1021/BK-1992-0490.CH018.

Borovkova V.S., Malyar Y.N., Vasilieva N.Y., Skripnikov A.M., Ionin V.A., Sychev V.V., Golubkov V.A., Taran O.P. Materials, 2023, vol. 16, no. 4, 1525. https://doi.org/10.3390/ma16041525.

Malyar Yu.N., Sharypov V.I., Kazachenko A.S., Levdansky A.V. Journal of Siberian Federal University. Chemistry, 2019, vol. 12, no. 1, pp. 73–86. https://doi.org/10.17516/1998-2836-0109. (in Russ.).

You T.-T., Mao J.-Z., Yuan T.-Q., Wen J.-L., Xu F. Journal of Agricultural and Food Chemistry, 2013, vol. 61, no. 22, pp. 5361–5370. https://doi.org/10.1021/jf401277v.

Wen J.-L., Sun S.-L., Yuan T.-Q., Xu F., Sun R.-C. Journal of Agricultural and Food Chemistry, 2013, vol. 61, no. 46, pp. 11067–11075. https://doi.org/10.1021/jf403717q.

Bauer S., Sorek H., Mitchell V.D., Ibáñez A.B., Wemmer D.E. Journal of Agricultural and Food Chemistry, 2012, vol. 60, no. 33, pp. 8203–8212. https://doi.org/10.1021/jf302409d.

Rietzler B., Karlsson M., Kwan I., Lawoko M., Ek M. Biomacromolecules, 2022, vol. 23, no. 8, pp. 3349–3358. https://doi.org/10.1021/acs.biomac.2c00457.

Karlsson M., Giummarella N., Lindén P.A., Lawoko M. ChemSusChem, 2020, vol. 13, no. 17, pp. 4666–4677. https://doi.org/10.1002/cssc.202000974.

Eugenio M.E., Martín-Sampedro R., Santos J.I., Wicklein B., Ibarra D. Molecules, 2021, vol. 26, no. 13, 3819. https://doi.org/10.3390/molecules26133819.

Smit A.T., Dezaire T., Riddell L.A., Bruijnincx P.C.A. ACS Sustainable Chemistry & Engineering, 2023, vol. 11, no. 15, pp. 6070–6080. https://doi.org/10.1021/acssuschemeng.3c00617.

Wang S., Gao W., Xiao L.-P., Shi J., Sun R.-C., Song G. Sustainable Energy & Fuels, 2019, vol. 3, no. 2, pp. 401–408. https://doi.org/10.1039/C8SE00359A.

Kuznetsov B.N., Vasilyeva N.Y., Kazachenko A.S. et al. Wood Science and Technology, 2020, vol. 54, pp. 365–381. https://doi.org/10.1007/s00226-020-01157-6.

Vasile C., Baican M. Polymers, 2023, vol. 15, no. 15, 3177. https://doi.org/10.3390/polym15153177.

Taran O.P., Miroshnikova A.V., Baryshnikov S.V., Kazachenko A.S., Skripnikov A.M., Sychev V.V., Malyar Y.N., Kuznetsov B.N. Catalysts, 2022, vol. 12, no. 11, 1384. https://doi.org/10.3390/catal12111384.

Опубликован
2025-12-19
Как цитировать
1. Kazachenko A. S., Maliar Y. N., Levdansky A. V., Fetisova O. Y., Ionin V. A. PHYSICOCHEMICAL STUDY OF CEDAR BARK ETHANOL LIGNIN // Химия растительного сырья, 2025. № 4. С. 177-185. URL: https://journal.asu.ru/cw/article/view/16965.
Раздел
Биополимеры растений